
Traceability in a heterogeneous software development lifecycle

Sofus Albertsen

Advisor: Thomas Hildebrandt
Submitted: June 2016

ii

Abstract

The need for efficient traceability in a distributed software de-
velopment lifecycle (SDLC) is growing with the size of the prod-
uct under construction. As the lifecycle gets more and more com-
plex, the traceability suffers, making creation and alternation of a
pipeline difficult. By using an event-based technique that supports
dynamic trace generation stored in a graph database and leverag-
ing the ideas of linked data, we can make a cross tool link of the
pipeline, giving the much-wanted traceability in the SDLC. This
thesis will present a data format for creating a graph structure, a
DSL for manipulating the target tool data, as well as a framework
for extracting the relevant information from the tools included in a
distributed SDLC.

Contents

Contents iii

List of Figures v

1 Introduction 1
1.1 Problem description . 1
1.2 Abbreviations . 2
1.3 Organization of this thesis . 2
1.4 Terminology definitions . 3

1.4.1 Software development life cycle 4
1.4.2 Traceability . 4
1.4.3 Trace links . 6
1.4.4 Artifacts and events . 6
1.4.5 Continuous integration . 7
1.4.6 Continuous delivery . 7

1.5 Research methodology . 7

2 Analysis 11
2.1 Literature review . 11
2.2 Thesis delimitation . 15
2.3 Industry interviews . 17

2.3.1 Interview setup . 17
2.3.2 Case companies . 17
2.3.3 Findings . 18

2.4 Summary . 19

3 Framework design 21
3.1 Overall architecture . 21
3.2 Event-driven traceability . 22

iv Contents

3.3 Domain requirements . 22
3.3.1 Scalability . 23
3.3.2 Geographical distribution 23
3.3.3 Namespace . 24
3.3.4 Timing . 25

3.4 Database model . 27
3.4.1 Cypher query language . 28

3.5 Data format requirements . 29
3.5.1 Message format . 30

3.6 Data parsing . 31
3.6.1 Framework plugins with GPL 32
3.6.2 DSL . 34

3.7 DSL . 34
3.8 Overall framework design . 37

4 Framework validation 41
4.1 Test setup . 41
4.2 Test cases . 45
4.3 Results . 46

4.3.1 Finding 1: Ability to visualize the pipeline from a given event. . . 47
4.3.2 Finding 2: Ability to measure lead time between two events . . . 49
4.3.3 Finding 3: Case A: making compliance with ISO 26262. 50
4.3.4 Finding 4: Management: Has this issue been resolved in this release? 51

4.4 Summary . 52

5 Limitations 53
5.1 Validation . 53
5.2 Performance . 53
5.3 Version control traceability . 54
5.4 Event and Artifact id namespace . 55
5.5 Schemaless types . 56
5.6 Summary . 56

6 Future research 59
6.1 Visual tool/front end . 59
6.2 Log files aka expost f acto events 60
6.3 Named relations . 61
6.4 Alternatives . 62

7 Conclusion 63

7.1 Acknowledgement . 64

A Mail correspondance 65

B Example of tool emitted data 67
B.1 Jira data . 67
B.2 Gitlab data . 73
B.3 Jenkins data . 74

C Code 79

Bibliography 81

List of Figures

1.1 Exponential increase in integration points i for the number of
tools available in the toolstack n. 2

1.2 SDLC phases, performed in the waterfall methodology 4
1.3 Multi-methodological approach to information systems re-

search by [46] . 8

2.1 Traceability Reference Schema from [51] 14
2.2 Trace of artifacts in a SDLC . 14

3.1 Artifacts and event in the SDLC. Rectangles illustrates arti-
facts, and diamonds represent evolving events. 22

3.2 Namespace overlaps between the tools A and B but not C . . 24
3.3 Nodes with a relationship from B to A 25
3.4 Node B with a relationship to shadow node A 26
3.5 Abstract illustration of the correspondence between the events

captured by the framework and the individual tools artifacts.
Icons are taken from AWS Simple Icons set [2]. 38

vi List of Figures

4.1 Illustration of the test setup. The black arrows illustrate the
flow of inter-tool messages. The blue arrows illustrate the
framework messages and endpoints. 42

4.2 Illustration of event nodes (colored yellow), and all the tool
specific data (any other color). 46

4.3 Illustration of the events collected in the "simple" test case. . . 47
4.4 Illustration of the two branches master (left) and development

(right). A change is made at development and merged back
to master. 48

4.5 Illustration of the events collected in the "branching" test case.
(1) are Jira events, (2) are Jenkins events, and (3) and (4) are
the merge commit and commit with the actual change respec-
tively. 48

4.6 Illustration of the events collected in the "BBMB" test case. (1)
are Jira events, (2) and (3) are Jenkins events, and (4) are the
merge commit and commit with the actual change respectively. 49

4.7 Illustration of the events collected in the "Build/build" test-
case. (1) are Jria events, (2) are Git commit and push events,
and (3) and (4) are the two Jenkins builds that refer to the
same commit . 50

4.8 Illustration of the events collected in the "Build/build" test
case. (1) is the Git commit, (2) and (3) are the two Jenkins
builds that refer to the same commit. 51

6.1 A developer-centric ”Follow Your Commit” visualization of
the Eiffel framework . 60

A.1 Case A: Response . 65
A.2 Case A: Reply . 66
A.3 Case B: Response . 66
A.4 Case B: Reply . 66

Chapter 1

Introduction

1.1 Problem description

A typical software development lifecycle (SDLC) goes from require-
ments to design, construction, testing, debugging, deployment, and
lastly maintenance. With increased complexity and trends like continu-
ous integration/delivery in an SDLC, the traceability between the differ-
ent artifacts gets equally harder to obtain efficiently. Some commercial
tools like IBM’s Jazz platform, Atlassian’s tool suite, and Microsoft’s
Team Foundation Server maintain a full development stack and can,
therefore, maintain a trace between all steps. The downside to these so-
lutions is both the narrow tool selection, the steep learning curve, and
license cost. This vendor lock-in prevents the companies from choosing
the best-of-breed tools for their SDLC.

The enterprise ecosystem is very diverse. Its tool stack is heteroge-
neous, making a "fixed set of tools" approach impossible. Each tool is
producing its artifacts independently, and usually only with integration
to the neighboring tools in the stack. Lastly, companies have different
tools on each of the steps in the SDLC and therefore different artifacts.
The idea of having this heterogeneous collection of tools maintaining an
integration to each other is too much work to be feasible, as illustrated
in figure 1.1.

At the same time a lot of industries have regulations and laws permit-
ting them to have full traceability from requirements to the final prod-
uct; Automotive directives [15], FDA regulatory [33], Solvency II [22]
and the like. There is a need for a framework that can adapt to certain
regulatory workflows as well as a diverse set of tools involved in the

2 Chapter 1. Introduction

n = 3
i = 3

n = 4
i = 6

n = 5
i = 10

n = 6
i = 15

n = 7
i = 21

n = 9
i = 36

n = 16
i = 120

Figure 1.1: Exponential increase in integration points i for the number
of tools available in the toolstack n.

lifecycle while still being flexible enough to plug into any given SDLC.
The given framework must not obstruct the target software applications
and only set a minimum of requirements in order for the framework to
be as broadly integrable as possible.

1.2 Abbreviations

COTS Commercial of the shelf software

SDLC Software development lifecycle

DSDLC Distributed software development lifecycle

ALM Application lifecycle management

DSL Domain specific language

GPL General purpose language

IS Information System

1.3 Organization of this thesis

This thesis is organized into the following chapters:

Introduction, where this section also resides, talks about the research
methodology this thesis is working on. It also gives a definition of the
core terminology used.

1.4. Terminology definitions 3

The Analysis chapter contains the literature review where past ap-
proaches to solve the problem are analyzed. Thereafter it describes the
delimitation of the thesis, the analysis of the domain under research,
and the requirements from the companies interviewed. The result here
is a list of capabilities the framework must possess, along with some
verifiable questions that can be executed on the framework in order to
validate its suitability to solve the problems.

The Framework design chapter takes the key points from Analysis
and transforms it into the technologies chosen for the framework. Fur-
thermore it gives a detailed view of how the framework is structured. It
describes the architecture of the framework and points out some exam-
ples of the implementation.

The Framework validation and Limitations chapters validate and de-
scribe the limitations of the framework. They display the test scenarios
that will act as the evaluation criteria for the framework. Lastly they
discuss the limitations of the framework on the basis of the validation
performed and the findings from the Analysis chapter.

The Future research chapter lists areas of interest for future research
and development based uppon the project conducted in this thesis.

The Conclusion chapter concludes on the work produced in this the-
sis. It synthesizes the reason for the research, the results generated and
talks about the significance of the study.

The target audience of this thesis is people in the software engineering
industry as well as students interested in traceability. Basic knowledge
about programming, graph databases, domain specific languages, con-
figuration management and traceability is presumed.

1.4 Terminology definitions

Terms can oftentimes be ambiguous, even in a specialized field of re-
search. This section will highlight some of the most important terms
and make a definition on the meaning of the term in the context of this
thesis. The section is divided into subsections, each with its own term
or family of terms.

4 Chapter 1. Introduction

1.4.1 Software development life cycle

Describes the chain of phases a given piece of software is going through
during its life cycle. A waterfall SDLC consists of the following phases
[1] shown in 1.2.

1 Requirements - Design - Construction
2 - Testing - Debugging - Deployment - Maintenance

Figure 1.2: SDLC phases, performed in the waterfall methodology

Phases can be merged into one another and looped in different
methodologies giving a different cycle than the one shown in 1.2.
An example is the Test-driven development approach for constructing
software[27]. Here you design your tests, construct your tests, construct
the functionality, and execute the tests to verify the correctness of the
implemented.

All methodologies generally have the same activities, but gives them
different importance and placement in the SDLC.

Distributed SDLC puts a geographical aspect into software develop-
ment. The main problem with distributed software development is both
formal and informal communication[39]. Studies show that the amount
and quality of the communication across sites are drastically reduced
compared to co-located teams.

Application lifecycle management is a broader view that focuses on
the whole enterprise around software development. ALM is about
managing the entire application lifecycle, both business and operations.
SDLC is one of its focus areas.

1.4.2 Traceability

Literature on traceability stems from the study of requirements specifi-
cations. One definition often cited is [37], which defines requirements
traceability as:

The ability to describe and follow the life of a requirement,
in both a forward and backward direction

1.4. Terminology definitions 5

Forward traceability is the trace from requirements through task defini-
tion all through deployment and use. Backward is the same but in the
opposite direction i.e. from deployment to requirements. The benefits of
traceability are now recognized across all phases of software engineer-
ing. IEEE[23] has the following two general definitions of traceability:

(1) The degree to which a relationship can be established be-
tween two or more products of the development process, es-
pecially products having a predecessor-successor or master-
subordinate relationship to one another; for example, the de-
gree to which the requirements and design of a given soft-
ware component match.

(2) The degree to which each element in a software develop-
ment product establishes its reason for existing; for example,
the degree to which each element in a bubble chart references
the requirement that it satisfies.

Another way to look at traceability as a definition is by the following
two factors: the scope and the type of traceability.

Scope The scope of a traceability effort is defined as being either ver-
tical or horizontal[52, 41, 54, 43].

Vertical traceability is the tracing done inside a single phase with
similar types of artifacts. One example of this is one code component
that is required for another component to work, or a task that is broken
down into subtasks. As these vertical traces are single phased, they are
also normally single tooled, making traceability easy to manage.

Horizontal traceability is the cross-phased tracing of artifacts as they
evolve. An example of horizontal traceability is the flow of an action
propagating though the system, e.g. a code commit that resolves a task,
gets compiled, tested and released to artifact management. The extent
of the horizontal scope varies greatly, depending on the tool chosen for
the traceability.

This thesis is going to focus on the horizontal traceability across
phases, also defined as developmental relations in [52, p6], referencing
[36]

Dependency relations are called developmental relations and
are used to describe the logical structure of development and

6 Chapter 1. Introduction

provide tracing requirements through the artifacts generated
during the other phases of the software development lifecy-
cle.

1.4.3 Trace links

Trace links (or just links in this context) is the relation between artifacts
in an SDLC. [30] has a quite formal definition of (traceability) links as:

A link Link(a, a′) represents an explicit relationship defined
between two artifacts a and a′. If a and a′ are directly linked
as in a→ a′, where→ indicates a link, then the link is said to
be direct, and if a′ and a′′ are indirectly linked through one
or more intermediate artifacts, as in a → a′ → a′′ , then the
link is said to be indirect. Let a => a′′ represent an indirect
link from a to a′′. An artifact (such as a′) through which an
indirect link is established is

said to be an intermediate artifact. The direction of the link
indicates that the link is established from the artifact on the
left-hand side (LHS) to the one on the right-hand side (RHS),
such that the LHS artifact exhibits a dependency upon the
RHS artifact.

When talking about trace links, we define them as directed binary re-
lation markers between two artifacts. Even though it is directed, the
marker needs to be traversable both ways in order for us to achieve both
forward and backward traceability. A given artifact can have an unlim-
ited amount of relations to other artifacts.

1.4.4 Artifacts and events

Each phase in the SDLC produces different kinds of artifacts. For ex-
ample, requirements phase works with functional and non-functional
requirements as artifacts, where Construction phase works with tasks,
repositories and code changes as its artifacts. An artifact is in [30] de-
fined as:

a piece of information produced or modified as part of the
software engineering process [49]. Artifacts take a variety of
forms including models, documents, source code, test cases,

1.5. Research methodology 7

and executables. Such artifacts, in whole or in part, form the
traceable objects of the system. Let A ={α1, α2, α3, ..., αn} be
the set of all identified artifacts in the system. Let R ={r 1 ;
r 2 ; r 3 ; . . . ; r n} ⊂ A be the subset of artifacts that are
requirements.

We define artifacts as any kind of content produced or generated
either manually or automatically during the SDLC.

Events are defined as isolated activities that transform or manipulate
artifacts produced in the SDLC.

1.4.5 Continuous integration

Continuous integration is a software development practice with the pur-
pose of ending the so-called "integration hell" often found in large non-
agile projects[5]. It was made popular by the advocators of Extreme
Programming[7]. It advocates for one main source repository for the
whole team, and only a few, short-lived branches from the mainline.
Every developer shall commit code to the common repository often,
making the change sets small. The idea behind it is to fail fast and con-
trol the quality of the code through tests (another practice in extreme
programming). As you integrate often, your tests and builds must be
automated.

1.4.6 Continuous delivery

is an extension of continuous integration that span all the way out to
the release of a product[4]. The biggest distinction is the notion that ev-
erything needs to be tested and ready for a potential deployment with
every commit. This requires that all users, both humans and machines,
are ready and able to integrate with the new version of the tool at com-
mit time. The focus here is not only on the components in isolation, but
the whole ecosystem around it.

1.5 Research methodology

As stated in the abstract, a software framework is to be developed in
order to test whether the assumptions stated in the Framework design

8 Chapter 1. Introduction

chapter can be validated against the problems described in the Analysis
chapter.

The research methodology conducted in this thesis is done through
a multi-methodological approach to information systems (IS) research,
described by [46]. The paper explains how building software can be the
best way to validate a hypothesis:

Concepts alone do not ensure a system’s survival. Systems
must be developed in order to test and measure the under-
lying concepts. Systems development is, therefore, a key ele-
ment of IS research.

The paper describes a set of methodologies that can be used when con-
ducting software engineering in research.

Figure 1.3: Multi-methodological approach to information systems re-
search by [46]

.

The overall methodology has four stages shown in figure 1.3; Theory
building, Experimentation, Observation and Systems Development.

According to [46], the research starts with the notion of a new model,
concept or construction of conceptual framework in the theory building

1.5. Research methodology 9

process. One must then conduct experiments and make observations in
order to gain knowledge about the domain under research. Here, the re-
searcher also learns how to generalize their hypotheses/models in order
to make their research relevant to a broader field. The system develop-
ment phase is where the knowledge gained from the other phases is put
to use when constructing the proof of concept/prototype that enables
the researcher to validate the theory.

By using the stages described in the paper, it is easier to divide the
research conducted in this thesis into chapters.
Our theory building phase is described in Problem description where
we have defined a problem domain, and found a gap in the research to
cover that problem. The Experimentation and Observation phases are
covered with interviews with industry companies, narrowing problem
domain and requirements. It is also through these observations that we
can begin to sketch a framework for solving the problem.
The systems development phase is covered in the Framework design
chapter where we describe the overall architecture of the framework
constructed as well as discuss some of the experiments that were cre-
ated along the way in order for us to refine our framework. With the
Framework validation chapter, we test the effectiveness of our frame-
work to manifest our theory building phase.

We deem this approach to be the best suited for the area under re-
search. Without a prototype framework, it is hard to uncover the practi-
cal problems that the theoretical research lacks.

Chapter 2

Analysis

With the overall description and terminology of the domain now de-
fined, we will analyze the domain further in order to extract the re-
quirements our framework must possess. We will study the current
literature on efforts to solve the problem and discuss their differences
and limitations. That leads to defining the delimitation of the thesis.
The delimitation makes some assumptions and scopes on the problem
making it tangible to design the framework later on. When the scope of
the solution is defined, we will look at the specific requirements for the
framework through industry interviews.

At the end, we will have a list of requirements that the framework
must be able to fulfill in order to validate its ability to solve the problem
under research.

2.1 Literature review

Traceability is widely recognized as a key success factor for companies
involved in software development[41, 51, 52, 31].

In empirical studies like [41], different companies note different po-
tential benefits from having traceability; from verification against third
party certification, and increase in process efficiency, to the transparency
of the development process.

These benefits are very diverse and rarely coherent. A possible ex-
planation to this is that the term traceability is not without ambiguity
[51], as also stated in the Terminology definitions section. This ambi-
guity collects many different activities under the same term, giving a

12 Chapter 2. Analysis

blurred picture on which benefits are to be gained. A lot of research has
been conducted into the different aspects of traceability.

In order to gain traceability, one must collect the trace links from one
artifact or event to the next. The production of trace links can either be
done manually or automatically. Fully manual traceability without aid
is unfeasible if not mandated e.g. by a regulation due to the amount
of resources needed for the activity and the high risk of errors in the
repetitive job [26]. Automatically generated traceability is prone to low
accuracy in identifying the traces, as well as having a large portion of
false positives[29, 38].

With automatic traceability, one can either try to create the traceabil-
ity as part of the development process or as a post-development effort.
[25] calls these two methods in situ or ex post facto. [54] uses the terms
off-line and on-line traceability and describes them as follows:

Regarding requirements traceability, this can be done either
on-line, in which case traces are stored automatically by a
tool as a by-product of the development activity. Or it can be
done off-line, which means that traces are recorded automat-
ically or manually after the actual development activity has
been finished

Both studies point to the fact that online traceability is better than offline
recreation of the trace links, specially if the tools provided can help the
users create the wanted traceability.

Traceability classification types There are many different types of
traceability relations discussed in the literature [52, 54, 51]. [54] divides
traceability into two categories; functional and non-functional: Func-
tional traces are described as follows:

These are created by transforming one artifact into another
using a defined rule set. The transformation is not required
to be performed automatically, but it has to follow unam-
biguous procedures, such as transcribing an audio recording
of an interview.

Non-functional traces are described in this way:

They refer to traces of informal nature. These traces result
from more or less creative process, such as semantically an-
alyzing and extracting customer requirements from a set of

2.1. Literature review 13

meeting minutes. In the technical category, non-functional
traces could, for example, exist on the parts of the code which
are affected by quality requirements.

This thesis focuses on the functional, transformatory process of trace-
ability throughout the SDLC.

When reading the literature on traceability in SDLC, the main focus
has been on finding a superset of relationship types in order to describe
the traceability in full detail. [52] divides it into eight different main
groups of relations; dependency, generalization/refinement, evolution,
satisfaction, overlap, conflicting, rationalization, and contribution.

dependency When artifact A’s existence relies on artifact B’s existence,
there is a dependency relation between A and B.

generalization/refinement as stated in [52]. Generalization/Refinement
relations are used to represent logical entities at different levels of
abstraction.
An example of this in the agile methodology could be an epic bro-
ken down to multiple tasks, where the information about the work
being performed becomes more and more refined in the break-
down structure.

evolution is the trace of an artifact that evolves. It represents the history
of the artifact by maintaining a schemaless versioning system of
the artifacts.

satisfaction is the link between a requirement and some part of the
product that has been developed if the part satisfies the given re-
quirement.

overlap relations represent relationships between document entities
that represent the same logical entity. Two artifacts referring to
the same feature of a system constitutes an overlap relation.

conflicting relations is when two artifacts cannot both be implemented.
This can either be as requirements or design guidelines etc. This
conflict can be resolved when one of the artifacts either gets dep-
recated/deleted or modified.

rationalization represents the why of a given feature or task that points
to a use case, requirement or design rationale.

14 Chapter 2. Analysis

contribution This relation type is defining who is behind a given arti-
fact whether the artifact is a use case or product release. As an
example, all developers that push change sets to a particular class
or method would be added as contributors to that class.

Other literature has different types of traceability relationships. In
another study [51] nine traceability relationships were defined in their
Traceability Reference Schema (TRS).

Figure 2.1: Traceability Reference Schema from [51]

The two definitions have some similar types such as conflicting, and
ConflictsWith, but others does not have a direct equivalent like TRS’s
IsResponsibleFor type. This leads to the conclusion that there does not
exist a fixed set of relationship types when dealing with traceability.

Most of the literature referenced has focused on traceability of hu-
man made artifacts. Examples of that are requirements, use cases, tasks,
and code. They either neglect the building phase of a program, or do
not focus on that part of the traceability. With continuous delivery and
integration having an increasingly bigger impact on the industry with
time, this part of the SDLC has gained increased importance as well.
Especially the focus on tracing the artifacts that are created in a modern
SDLC after a commit of code to a repository. We have gone from hav-
ing manual release processes to defining it all in an automated release
pipeline. It is the trace of artifacts that is illustrated on figure 2.2.

1 work item -> commit -> build -> test -> release/promotion

Figure 2.2: Trace of artifacts in a SDLC

2.2. Thesis delimitation 15

Each step of the figure can happen several times in a lifecycle, e.g. a
commit can be build and tested multiple times.

All of the studied literature except [30, 52, 31] are targeting artifacts
as their base of traceability. [30] is describing the hurdles of maintaining
the artifact-based traceability. They are describing another approach
where they trace the events instead of the artifacts. They see an artifact
evolution as a series of events based on changes. So if all changes create
an event, then the evolution of an artifact can be described as the sum
of all changes. They try to solve the maintenance problem described
as one of the three hurdles of traceability in [54]. The three hurdles of
traceability are creation, maintenance and usage of traceability artifacts.
By making the events immutable, the maintenance of the versioning is
built into the event approach; every event acts as an indicator for a new
version of the underlying artifact.

The Swedish telco Ericsson has in its unpublished paper [31] pre-
sented an online event-based traceability framework following this idea.
They describe the framework as follows:

This paper identifies traceability as a key challenge in achiev-
ing continuous integration and delivery and documents an
industry developed framework — Eiffel — designed to pro-
vide real-time traceability in continuous integration and de-
livery.

It has a fixed set of relationship types as well as the capability of con-
trolling the software pipeline by having the clients trigger tools on given
events making it not only focused on traceability but also on orchestra-
tion of the SDLC pipeline.

2.2 Thesis delimitation

As stated in the Literature review, traceability is a broad subject of re-
search. In this section, we try to narrow down the scope of research
conducted in this thesis, while also stating some assumptions going for-
ward.

We are not looking into the human aspects of SDLC or traceability.
If a human constructs a wrong tracelink, then that tracelink is blindly
incorporated in our framework. We are assuming that the tracelinks are
created, whether or not it is from manual or automated activities. For

16 Chapter 2. Analysis

example, when a developer resolves an issue with a commit in source
control, we assume that there is guidance to do that.

What we are aiming at is to collect and visualize all the tracelinks
in a uniform way. We are focusing on the horizontal traceability that
spans across phases in the SDLC. We are not trying to trace the artifacts
themselves but rather the corresponding events. The framework strives
to be method agnostic and applicable to all SDLCs with emphasis on the
ones using continuous integration and delivery. This is due to the fact
that much more importance is laid on configuring the build pipeline in
order to produce the wanted software components.

Instead of defining a new set of relationship types up front, or use an
existing, the presented framework of this thesis will try on an undefined
type system. It will work with one event supertype where the type is not
restricted to any given set but can be defined by the users of the frame-
work from instance to instance. That way we keep the framework as
lightweight as possible, making it adaptable to any given methodology
or process used.

Proper tool support and visualization is deemed important in order
to raise the quality of traceability[44]. Many of the papers presented in
the review do not talk about how they visualize the given traceability
they are trying to reach [51, 50, 24]. Even though visualization of the
traced is deemed important, it is not directly part of this thesis. Focus is
on creating the horizontal tracelinks and using the built-in tools in the
database to visualize the data stored. The creation of an effective GUI
would require mockups and user experience research and is therefore
thought of as a study on its own.

[48] Ramesh et al. describe a traceability dimensions table that repre-
sents the dimensions of traceability information. Their usage of the table
is tightly coupled with their research on reference models for require-
ments traceability and therefore does not directly apply to this thesis.
However, the dimensions contained in the table represent a good way of
scoping the area under research as illustrated in table 2.1.

This thesis will present a traceability framework that works on any
given SDLC regardless of methodology and process followed. It is inte-
grated into the software development tool chain without required alter-
nations of the targeted tools and creates tracelinks based on the events
emitted. It combines the different approaches of event-based traceability,
graph-based database, schemaless relationships and a single supertype.

2.3. Industry interviews 17

Dimension Concrete example
What Events that stem from evolving artifacts
Who The tools that evolve artifacts of a SDLC
Where In a graph database
How By making a generic plug-in
Why To answer the questions found in the company interviews
When On-line; when the events are running

Table 2.1: Scoping the area under research through the traceability di-
mensions.

2.3 Industry interviews

In this section we will introduce some case companies from the indus-
try that have interest in improving their traceability. The interview con-
ducted will lead to a list of capabilities that our tool should have in order
to show its validity towards the enterprise environment targeted.

2.3.1 Interview setup

The interview is being conducted in relation to [42]. We conduct ex-
pert interviews with the purpose of thorough exploration to define real-
world problems. The interview has been conducted at a conference in
Trondheim on April 18[19]. Prior to this meeting, a number of infor-
mal meetings have taken place where the problem of traceability and
configuration management have been discussed in broader terms. Both
companies have an interest in the framework and knows about the pro-
posed solution presented in this thesis before the interview. The in-
terview happened during a discussion session about traceability. It is,
therefore, more of a guided observation than a formal interview. The
interview itself is not publicly available due to sensitive information be-
ing disclosed. Meanwhile, the statements presented in this section have
been verified for approval by the participants (see Appendix Mail corre-
spondance for more information).

2.3.2 Case companies

Employees from two case companies have been interviewed for this the-
sis. Both companies are large-scale global companies with distributed
development.

18 Chapter 2. Analysis

Case A is a large automotive company. They have over 15,000 employ-
ees worldwide, and software development in several countries. As an
automotive company, they need to comply with the ISO standard 26262
titled "Road vehicles – Functional safety"[15]. It is a risk-based standard
that identifies critical failure points and prescribes the implementation
of countermeasures or backup systems. Traceability is a key feature to
have when documenting measures to ensure a sufficient and acceptable
level of safety is being achieved.

Case B is a major Danish company with 10,000+ employees globally,
where more than 100 people in different locations around the world are
working with software engineering. Software development is done both
in-house as well as by outsourcing.

2.3.3 Findings

During the interviews, there were statements that came into discussion
multiple times. The companies describe these statements as key features
or problems that they think can be solved through traceability. The
statements are described as capabilities the framework must possess.

Finding 1 Ability to visualize the pipeline from a given event.
Example:
As a developer, I want to know who is using this component in other
libraries etc.
As a developer, I want to know where my commit is in the pipeline. Has
it been deployed, or is it halted somewhere?

Finding 2 Ability to measure the lead time between two events.
Example:
Measure the time from when an issue is created to first commit is
pushed to the repository.
Measure the complete pipeline time from commit to executable cre-
ation/product release.

Finding 3 Case A: making compliance with ISO 26262.
Example:
Compare two builds from identical change sets. When testing embed-
ded software, the build used in the simulator and the build used in the

2.4. Summary 19

actual device are differently compiled, and are, therefore, two different
artifacts.

Finding 4 Management: Has this issue been resolved in this release?
Example:
Have all commits connected to this issue been incorporated in this re-
lease?
What tests were run to secure that it was resolved?

Finding 5 We want to have an event mechanism that can drive the
continuous delivery pipeline and that is tool agnostic.
Example:
Every tool should be able to trigger a build in the pipeline.
We want to be able to change vital components in the pipeline without
losing the pipeline itself.

Findings 1-4 are about visualizing the events recorded or its data in
one way or another. In that way, the tools will only have to produce data
to the framework to fulfill these requirements.
Finding 5 is about triggering events upon other events. This requires
that the tools also become consumer of events and some kind of trigger-
ing mechanism based on certain criteria.

2.4 Summary

In this chapter we have made good progress analyzing the details of
the problem domain and specifying the delimitations of the thesis. We
have conducted an interview with two case companies with large-scale
distributed software development. They come from different sectors,
making the findings more generic and applicable to a broader range
of industries. The findings described in this chapter will serve as the
foundation when designing the framework in the following chapter.

Chapter 3

Framework design

This chapter describes the decisions and thoughts that went into con-
structing the framework presented in this thesis.
The industry interviews lead to five findings that show how the compa-
nies could benefit from such a framework. Four of the listed findings are
about recording and visualizing the events happening in the pipeline.
They can be implemented without changing the internals of the given
tools in the pipeline. The last finding is about having an event-triggering
mechanism built in that can activate and partially control the pipeline.
In order to make this feature, the framework must know much more
about the process, and some kind of pipeline DSL must be implemented.
The pipeline must have some criteria that activate the tools accordingly.
The goal of this thesis is to make a lightweight, non-obstructive frame-
work that can aid in horizontal traceability. We will therefore only in a
very reduced manner take finding 5 into consideration when designing
the framework.

We want to construct a framework that tracks the events in the
pipeline and then links down to the underlying artifacts from each tool.
In that way, the overall managing of artifacts and their versions are kept
in the respective tools while still maintaining a visualization of the hor-
izontal traceability of the given pipeline.

3.1 Overall architecture

As described in the Artifacts and events subsection, the framework will
consist of multiple data senders, one from each instance of a given tool,
and a central database where all the data is stored. It will store the

22 Chapter 3. Framework design

events that the different tools emit. It will not save tool-generated arti-
facts related to the events, but instead link back to them.

3.2 Event-driven traceability

Each phase in the SDLC maintains its own set of artifacts. They are
rarely shared with other phases. Instead they evolve during events from
one phase to the next. In that way a requirement gets broken down into
tasks etc., as the figure below illustrates:

Requirement Breakdown Task

ImplementCode....

Figure 3.1: Artifacts and event in the SDLC. Rectangles illustrates arti-
facts, and diamonds represent evolving events.

Every time an artifact evolves from one phase to another, it does so by
an event as shown in figure 3.1. In order to make horizontal traceability,
we need to link events from one phase to the next. That way we end up
with a chain of connected events that all have relations to the underlying
artifacts. We are building the framework in the belief that any given
tool A knows who activated it e.g. tool B or a human, enabling us to
construct a network of traces by joining all the tools’ individual events
with its parent events.

3.3 Domain requirements

In this section, we are outlining requirements stemming from an implicit
knowledge that is not taken directly from the interviews or studies of the
companies. They are derived from the environment that the framework
must operate in as well as from the nature of the data they must support.
They do not necessarily mark a concrete implementational issue, but are
equally important in order to secure the quality of the framework. The

3.3. Domain requirements 23

section is divided into subsections that each represents a trait or restric-
tion that the final design needs to accommodate for when operating in
large enterprises.

3.3.1 Scalability

The framework needs to operate in large enterprise environments with
lots of different software projects running simultaneously. Each of the
projects have thousands of artifacts, and for that reason at least an equal
amount of events. The tool needs to accommodate for distributed soft-
ware development where multiple teams contribute to the same reposi-
tories. This requires a system that can handle peak loads without drop-
ping events and that has a high degree of availability. We, therefore,
need some kind of load balancer and messaging queue in order to com-
pensate for peak loads and also downtime in the database.
There is a large variety of message brokers and protocols in the mar-
ket; AMQP, JMS, MSMQ to name a few. We want to have a protocol
that was language agnostic, leaving room for implementing clients in
any language dictated by the enterprise. Of the three listed protocols,
only AMQP delivers that; JMS is Java only, and MSMQ is built on Mi-
crosoft technologies with only a 10-year-old abandoned library to the
JVM languages.

RabbitMQ[21] is an enterprise grade open source message broker,
talking through the AMQP message protocol as the standard. It features
a lot of the patterns described in [40] like clustering capabilities as well
as persisting and guaranteed delivery of messages. It also has features
like message filtering (called routing) and publish-subscribe channels
(called fan-out) making it possible to build in finding 5 (2.3.3) at a later
point if need be. This makes us able to make a stateless framework be-
cause queuing, for instance, is handled by the message broker, making
our framework more scalable overall.

We choose RabbitMQ because of its ability to scale, its language ag-
nostic protocol and the fact that it has the features needed from a mes-
sage broker in our framework.

3.3.2 Geographical distribution

Working with geographically distributed teams, time zones become an
issue. If two events, A and B, are executed at the order A...B with 10

24 Chapter 3. Framework design

seconds interval, and B → A, then the tracetracelinklink will be right-
fully made. But if the time zones of A and B differ by one hour, the time
difference would be recorded an hour wrong on either side of the time
zone difference. We, therefore, need to record timestamps in a format
that either is noting the time zones or that has a universal time schema.

Unix time, also known as Epoch time, displays the time in number of
seconds from January 1st 1970 00:00:00 UTC time. It ignores local time
zones by stating that all time originates from UTC. The time format is
an integer number, making math calculations of the duration between
two timestamps trivial.

ISO 8601 [16] is the ISO standard for displaying both the time
and date. It is formatted in the following way: [YYYY] − [MM] −
[DD]T[hh] : [mm] : [ss]W where the T is a delimiter between date and
time, and W indicates the time zone. If the time zone is not indicated,
the local time zone is inferred. If used by the framework, the time zone
must be obligatory as the notion of "local" time zone is nonexistent. The
benefit here is that it is human-readable as well as easily comparable and
sortable with a trivial string comparison. The downside is that calculat-
ing a duration between two timestamps requires a lot more parsing.

As stated in the Findings section of the analysis, we are using the
timestamp to tell the duration between two events in a given chain.
We only care about the duration between the events regardless of their
different time zones. Consequently, we choose Unix time as the given
time format when dealing with events.

3.3.3 Namespace

A B C

Figure 3.2: Namespace overlaps between the tools A and B but not C

When working with a heterogenous set of monolithic tools, we can-
not guarantee the uniqueness of namespaces set by each tool resulting

3.3. Domain requirements 25

in what [50] calls an ambiguity problem. In our test setup described
in the later chapter Framework validation, we are working with three
specific tools; Jira, Gitlab, and Jenkins.

Jira uses a namespace for identifying issues that looks like this:
[XXXX − Y] where X represents the first 4 letters in the project name,
and Y the consecutive number of issues for that project.

Jenkins has a namespace that has the following convention: [X#Y]
where X represents the build job name, and Y represents the consecu-
tive build number from that build job.

The two examples presented here do not have a direct overlap of
namespaces and serve only as an illustration of the different names-
paces. But with an unknown set of tools it is not guaranteed that there
are no coalitions within the selected toolstack. In a large enterprise,
multiple instances of a given tool can be deployed, making it possible
to have ambiguity problems in the namespace of a single tool.

We regard namespace coalitions as a task best solved by the enter-
prise itself, as they already handle it on a tool level and most likely have
some corporate guidelines for namespacing. We have made it possible
to prefix the id in the data format through the DSL, making the users
able to solve any occurrence of the ambiguity problem regarding differ-
ent tools.

3.3.4 Timing

Figure 3.3: Nodes with a relationship from B to A

In order to make tracelink B→ A for the events emitted first A then
B, the nodes need to be inserted in the chronological order. With our
RabbitMQ message bus, we make sure that we uphold a first in, first
out (FIFO) queue into the database. But we still need to tackle two other
scenarios with timing:

26 Chapter 3. Framework design

1. Tool A is triggering B before reporting to the framework

2. Tool A is sitting on a heavily delayed line, making the messages
from B reach first

In both of the scenarios, we are dealing with events getting out of order.
If the events are inserted out of order, the ability to create tracelinks is
broken. This is because the framework is stateless meaning that it does
not temporarily hold events in memory to see if other nodes are coming
in to resolve the broken link.

The solution here is to make a shadow node of A as a placeholder
for the event that is missing as seen on figure 3.4. This has several
benefits over a stateful solution where traces will be retried several times
until given up. The first one is that we maintain the traceability when

Figure 3.4: Node B with a relationship to shadow node A

node A gets persisted; it will just merge its data into the shadow node,
transforming it into the real one. Another benefit is that we do not need
to have a separate queue for unresolved relationships that can run full
or terminate at some point. The database also marks the shadow nodes
in order for the framework to identify them and report if the level of
shadow nodes rises.

These scenarios may seem like thought experiments only, but they
stem from the work conducted in the Framework validation chapter. In
the concrete setup, an integration between Gitlab and Jira was made in
such a way that if the commit message to a certain repository included
the string "FIXED {task#}", Gitlab would call Jira to close the task. The
order of events would be as follows:

3.4. Database model 27

1. Gitlab receives the push containing the commit message

2. Gitlab calls Jira to close the task with the given id

3. Jira calls the framework with reference to the commit event.

4. Gitlab calls the framework to persist the commit and push events.

In this scenario the framework does not know of the commit before after
the task has been closed based on the given commit, resulting in an
out-of-order insertion into the database.

3.4 Database model

Over the past decades the number of different database management
systems has grown, with a lot of new systems comprised under the
NoSQL umbrella[45]. With the increase of volume and diversity of data
and usage, the decision on the database model is a key factor for scala-
bility and performance when constructing new software.

Relational databases are great for structured data where the model is
defined up front. But it puts a strict schema on the data, making it
unsuited for our heterogeneous toolstack and its data models.

Document, key-value and wide-column data stores all give the flexi-
bility of a schemaless data model, but they either do not support rela-
tionships or do not operate well when traversing n-degree relations as
well as the graph database.

Graph databases put the concept of relationships between data first.
Based on graph theory, they have the notions of nodes and edges to form
a graph. They are addressing the performance hit normal databases
suffer from when traversing through multiple relationships e.g. several
table jumps.

We use a graph database to store the data. This has several ad-
vantages over the alternative database systems. When querying our
database, we typically want to find the nodes that are on the same graph
as a given node A. This is the key point for graph databases’ existence.

28 Chapter 3. Framework design

We chose Neo4J database as the software implementation as it is one
of the most used graph databases[6] in the world. It is capable of mak-
ing directed binary relations between two nodes while still allowing the
relation to be traversed in both directions.
According to [32] it provided the second best performance on large
datasets only surpassed by DEX (now Sparksee). The reason for choos-
ing Neo4J over Sparksee is its open source license (GPL version 3[13])
as well as the large community around the product.

3.4.1 Cypher query language

Cypher query language is a declarative graph query language designed
by the Neo4J team to query the graph database. It is the graph database
equivalent to Structured Query Language (SQL)[9]. Instead of tables,
rows and columns the language has nodes, relations and properties of
the two. A common query is built up on the three keywords MATCH,
WHERE, RETURN.

MATCH defines the graph pattern that consists of nodes and relation-
ships we want to retrieve. One query can have several match state-
ments to describe the pattern in further detail.

WHERE defines limitations to one of the nodes or relationships in the
pattern. A lot of the limitations can also be described in the
MATCH clause, as seen below.

RETURN defines what part of the graph pattern you would like to re-
trieve from the database, just like the select part of an SQL state-
ment.

In the listing below is an example of a CQL statement used later in the
thesis.

1 MATCH (n:Event)-[r:Triggered_by*]-(m:Event)
2 WHERE n.id={event id}
3 RETURN n,r,m

Listing 3.1: Cypher query for getting all nodes of type Event in the
graph connected to a given node n

Translated into plain English, we want to get all the nodes of type Event
that are connected via a relation of type Triggered_by in any degree (the
asterisk in the end) and any relation direction from a given node n.

3.5. Data format requirements 29

3.5 Data format requirements

Unless deliberately made so, each tool in an SDLC has its own data
model and artifact types. But even if we have an arbitrary amount of
different tools, they all need to confine into some general requirements
in order for their data to be chainable and useful. This balance puts a lot
of restrictions into what we can expect to get from each tool. If too many
required fields are put in the data format, it ends up excluding tools,
with the possible outcome of breaking the tracelinks. If too few required
fields are put in, the data will loose the ability to display information
that is needed by the companies. We try to give some assumptions on
what to require from each tool.

Id As the main goal is to link events together, one must be able to tell
them apart. The only way to do that is to have a unique id on each and
every one of them.

Timestamp In order for the framework to expose how long it takes a
given chain to complete, one must know the start and end time of the
chain. But since it never knows when it ends (one event could occur
weeks after another in the chain), it needs to track each event with a
timestamp. Either that timestamp is emitted through the tool, or our
plugin must append this at the point of execution.

Previous id As stated in the Thesis delimitation, the tool needs to
know what activated it. Who were its predecessors? If a build B is
started by a commit A, then B must know of A in order to make the
tracelink A← B. One event can have one or several parent events. That
can, for example, be a release that has several commits on it since the
last release.

Type Knowing the type of event would also help. Is it a code commit, a
test execution, or a release? As stated in Thesis delimitation, these types
cannot be a fixed set of values since we do not know all the possible
tools a given company wants to incoorporate in their SDLC.

URL Since we are tracing the events, but want to get hold of the under-
lying artifacts, we need to have a link back to the corresponding artifact.
This is done by specifying a URL to the data origination. If the artifact

30 Chapter 3. Framework design

is not avaliable through a web address, then the link must be to the
corresponding server where the artifact is located.

Healthy event If a build has failed, or the packaging of the component
is executed with a warning, the pipeline is usually stopped. However,
a halted pipeline can be due to many different scenarios, and for that
reason it could be a benefit knowing whether or not the event chain is
still healthy or not. In this way, a developer can see the status of the
commit, aiding in Finding 1 from the industry interviews.

Data The last part is all the tool specific data. We do not give any
limitations or format to this because we have no control over the tools
used. The tool specific data is collected so that companies can make
custom queries about this kind of data if they choose so.

We have tried to make a data format that is information rich enough
that we can accommodate the industry deduced findings while still be-
ing applicable to the vast majority of the tools used in an SDLC.

3.5.1 Message format

After describing the data that needs to be included in the framework,
we also need to define a message format. Our message broker Rab-
bitMQ’s default wire-level protocol is AMQP, which is agnostic about
the data format our messages are in. Consequently, we could use any
format that can be used to contain data; XML, CSV, YAML, JSON etc.
We chose JSON as the format for sending the event messages because
JSON has a less verbose syntax than XML. It is also the javascript data
transfer format, so if a viewer to the data in the database was to be de-
veloped it would not be necessary to make any translations. In order
to validate whether a given message is against the format, we created a
JSONSchema, which validates against the Data format requirements.

1 {
2 "type": "object",
3 "oneOf" : [{
4 "properties": {
5 "id": {
6 "type": "string"
7 },

3.6. Data parsing 31

8 "prev": {
9 "type": "array",

10 "items": {
11 "type": "string"
12 }
13 },
14 "url": {
15 "type": "string"
16 },
17 "type": {
18 "type": "string"
19 },
20 "timestamp": {
21 "type": "string",
22 "format":"date-time"
23 },
24 "healthy": {
25 "type": "boolean"
26 },
27 "data": {
28 "type": ["object","string","array"]
29 }}
30
31 }],
32 "required": [
33 "id",
34 "prev",
35 "type",
36 "timestamp",
37 "healthy",
38 "data"
39]
40 }

In that way, we can have the schema validation, which is usually one
of the strengths of XML, together with the web-centric format of JSON.

3.6 Data parsing

Since the tool landscape is so diverse, our framework needs to accom-
modate for an arbitrary set of tools their data formats. As an example

32 Chapter 3. Framework design

of this diversity, Wikipedia lists 37 version control systems, where 28
are marked as actively developed[3]. It is not feasible to make a tool up
front that has a converter to every target tool imaginable. We need to
define a way to make it possible and easy to parse any given format of
data into our chosen format to make accurate tracelinks.

For extracting the relevant data one could use different path-
traversing libraries like JSONPath for JSON[12] or XPath for XML
reading[17]. But sometimes we need to make alternations on the data
like:

1. Concatenations of two values

2. Loop through some values and make Event nodes for each of them

3. Make evaluations (ifs) etc.

4. Take values from multiple paths into the same array

These functions are neither comprised in JSONPath nor XPath, and
it is therefore necessary to extend the capabilities of the libraries:

There are two ways to make our framework this extensible: Have
plugins with general purpose language or create a domain specific lan-
guage.

3.6.1 Framework plugins with GPL

One solution is to make an architecture that enables pluggable parsers.
The basic idea is that the parser needs to confine to an interface like the
one described below:

1 package dk.itu.tracy.parser;
2
3 import java.util.List;
4
5 import dk.itu.tracy.entity.Entity;
6
7 public interface Parser {
8 public List<Entity> parse(String inputString);
9 }

Listing 3.2: Parsing Interface in Java GLP

3.6. Data parsing 33

The inputString is the string coming from the target tool. A specific
implementation of the interface must then produce one or more entity
objects and return them to the framework. This was the first way of
trying to solve the parsing problem, and listing 3.3 shows the first way
to parse the JSON emitted from Jenkins.

1 public List<Entity> parse(String jsonString) {
2 Entity ent = new Entity();
3 List<Entity> out = new ArrayList<>();
4 JsonObject json = new

JsonParser().parse(jsonString).getAsJsonObject();
5 long date = json.get("timestamp").getAsLong();
6 ent.setTimestamp(new Date(date));
7 ent.setId(json.get("id").getAsString());
8 try {
9 ent.setUrl(new URI(json.get("url").getAsString()));

10 } catch (URISyntaxException e) {
11 e.printStackTrace();
12 }
13 if(json.get("building").getAsBoolean())
14 ent.setType("jenkins-build-started");
15 else
16 ent.setType("jenkins-build-done");
17 ent.setData(json);
18 JsonArray ja=json.get("changeSet").getAsJsonObject()
19 .get("items").getAsJsonArray();
20 String[]prev = new String[ja.size()];
21 for (int i = 0; i < prev.length; i++) {
22 prev[i]=ja.get(i).getAsJsonObject()
23 .get("id").getAsString();
24 }
25 ent.setPrev(prev);
26 out.add(ent);
27 return out;
28 }
29 }

Listing 3.3: Parsing Jenkins code in Java GLP

The downside of this method is the required knowledge about pro-
gramming, specifically Java, and the framework used for parsing. An-
other headache is that it does not support scripting, meaning that it

34 Chapter 3. Framework design

needs to be built and linked to the framework for every code change on
compile time.

3.6.2 DSL

Another solution is to build a Domain Specific Language to solve the
task. DSLs are languages tailored to a specific application domain[34].
This has the benefit of being more concise to the specific purpose. DSLs
can either be internal -embedded in a GPL language- or external -having
its own parser.

Internal DSLs have the benefit of making the GPL available to the
coder when needed while still having the domain specific syntax. One
downside of the internal DSLs is that they piggy bag on the mother
GPL and therefore still conforms to the syntax limitations of that given
language. Another consequence of making an internal DSL is that error
reporting is done through the GPL, often resulting in complex stack-
traces etc.

External DSLs are not bound by any parent language syntax, and
error messages are also custom created by the DSL author. The down-
side is that everything needs to be implemented by oneself.

We chose to make an internal DSL in the Groovy language[14]. Since
the rest of the framework is coded in Java, it made sense to take a JVM
based language. [35] lists several JVM languages suited for writing
internal DSLs. Groovy was chosen because of its large resemblance
in syntax to Java as well as its relative ease of developing a DSL in.
The language homepage has a lot of documentation on how to write a
DSL, as well as it has the book cited above. Groovy also has built-in
support for scripting enabling us to change the DSL at runtime instead
of compile time, making adaption of changes in formats and new tools
faster.

3.7 DSL

When making a DSL, there are several things one must take into con-
sideration. Is the DSL going to be graphical/visual or text based? How

3.7. DSL 35

are the grammar and concrete syntax of the DSL? According to [47]
programmers prefer text based DSLs over visual DSLs. As Fowler[34]
argues, experience shows that a DSL should not read like natural lan-
guage as it often leads to a complicated understanding of the semantics
with the added syntactic sugar.

According to [28] there are some design principles when designing
a DSL:

Identify the purpose of the language: Our DSL is used to describe the
parsing of data from an arbitrary format to our format defined
above. It is going to be used by people with software development
skills where tools like XPath and String manipulations are familiar
concepts.

Keep the language simple: We modeled our DSL around the Entity
Java class as it is mirroring the data format described above. It
is also the message format we send over the wire. When designing
the internal DSL, we only made common scenario methods avail-
able in the DSL. If more advanced things are needed, the whole
Groovy language can be used inside the DSL.

Test the language with dynamic instances: We have designed the lan-
guage by testing it up against three different kinds of tools and
multiple different instances of data emitted from each tool. That
way we uncovered features that the language needed to posses in
order to fulfill its purpose.

Use the problem domain as inspiration: We modeled the vocabulary
towards the vocabulary of the problem domain; parsing. As it
is a technical DSL, there are many technical terms in it. We tried to
hide the underlying GPL data structures when wanting to evaluate
to a given format. So instead of the user writing java.lang.String
she could just type String. In that sense only defining the datatype
as an abstract concept, but not knowing the internal implementa-
tion class we try to make the language more alligned with the
problem domain instead of the underlying GPL language.

An example of the concrete syntax of our DSL looks like the following.
For comparison, this is also targeting Jenkins as its source as the parser
file in Data parsing section:

36 Chapter 3. Framework design

1 parser ’JSON’
2 entity {
3 id = eval(’$.fullDisplayName’)
4 prev = eval(’$.changeSet.items[*].id’,’java.util.List’)
5 url = eval(’$.url’)
6 type = (eval(’$.building’)==’false’)?’Jenkins building

stopped’:’Jenkins building started’
7 data = all
8 healthy = (eval(’$.result’)==’FAILURE’)?false:true
9 timestamp = new Date(eval(’$.timestamp’, ’java.lang.Long’))

10 }

Listing 3.4: DSL code for parsing Jenkins files

The first line defines the parser used. This can be JSON, XML or the
like. The parser needs to match the input format given from the target
tool. Thereafter we build the instance of class Entity by extracting the
relevant parts of the targeted tools data into the properties of the Entity
class.

Groovy has optional parentheses, so if a method contains at least
one argument we can leave out the parentheses. But there must be
no ambiguity before the omissions can happen, or the results can be
unexpected. Consequently, we recommend the use of parenthesesfor
the sake of clarity.

In this example, we reduced the amount of code needed to be written
by 66% compared to the parser example in Data parsing. Besides the
Entity keywords, a collection of other keywords has been designed for
the DSL:

parser indicates what parser needs to be used. The only implemented
data format at the time of writing is JSON, but the architecture is
made so that all data formats can be supported.

all inserts all the target tool data into the property. Used for the data
property of the data format.

eval parses the given string into the data received from the target tool.
Uses JSONPath for JSON and will eventually use XPath for XML
etc. This method can take one or two arguments:

eval(String key) evaluates the key and parses the result to a String
representation.

3.8. Overall framework design 37

eval(String key, String returntype) evaluates the key and parses
the result to a representation of the given return type. To hide
the underlying data structures of Java, the user only needs to
write list, string, long or boolean to get the equivalent classes
in Java as return types.

array is used to combine one or more parsings into one array. Removes
null references as well.

parsedate uses the Java SimpleDateFormat class to parse a given string
into a Date object.

With this small set of keywords in our concrete syntax, we target com-
mon scenarios our DSL must encounter. Furthermore, when more ad-
vanced features need to be tackled it is easy to make GPL methods
available.

Interface We still need to be able to plug in several parsers that can
be utilized by our DSL. In that way, new data formats can be added to
support the DSL as long as they confine to the four methods below:

1 package dk.itu.tracy.dsl;
2 public interface Parser {
3 String eval(String key);
4 public <T> T eval(String key,String clazz);
5 void setup(String input);
6 String toJson(String input);
7 }

As long as a given dataformat can be parsed through the use of queries
(i.e. XPath for XML, YPath for YAML files), it can be implemented in
the DSL.

By making this DSL we separated the file format (XML, YAML,
JSON) from the data format of the specific tools data structure. The
code that handles the file format can then be reused every time that par-
ticular format is present. The only thing that needs to be described per
tool is how to parse the different data structures that reside.

3.8 Overall framework design

During this chapter, we have analyzed and presented parts of the cho-
sen design for the framework. We have looked at the problem do-

38 Chapter 3. Framework design

main, the environment that the framework must operate under, and
designed a framework on the basis of the Findings. This section will try
to give a broad overview of the architectural design of the framework,
seen from a deployment perspective. For full sourcecode, see appendix
Code. The framework consists of three components written in Java or

Figure 3.5: Abstract illustration of the correspondence between the
events captured by the framework and the individual tools artifacts.
Icons are taken from AWS Simple Icons set [2].

Groovy using Maven as the dependency manager; Tracy, REST2AMQP,
and AMQP2NEO.

Tracy is the main component of the framework. It consists of the fol-
lowing packages:

CLI is a small java main class that takes three arguments; proper-
ties for RabbitMQ connection, data from the target tool and
the DSL for parsing the data file parsed.

DSL is the package containing the Groovy DSL as well as the sur-
rounding code that parse data from Java to Groovy and back.
Is also includes the interface for implementing new parsers.

3.8. Overall framework design 39

Entity only contains the data transfer object (DTO) that is used to
internally represent the JSON data format.

Facade contains the code that communicates with Neo4J and Rab-
bitMQ respectively as well as a parser to and from JSON and
DTO.

REST2AMQP is a REST enabled wrapper around Tracy. It utilizes Javas
JAX-RS technology with the reference implementation Jersey.

AMQP2NEO is the bridge between the AMQP messages and the Neo4J
graph database. It utilizes the classes and methods of Tracy to
receive and persist the messages.

The point of the architecture design is to separate the logic of the frame-
work itself from its endpoints. In that way, the capabilities of the frame-
work can easily be integrated into other areas where it is needed.

One could argue that the CLI needs to be in a separate module. The
reason we included it in the Tracy component was based on the fact that
it was just one Java class with a main method. In that way, we do not
have to maintain a whole component for one class.

Chapter 4

Framework validation

Based on the outcome from the industry interviews, described in the
Findings subsection, we will validate the designed frameworks ability
to fulfill the capabilities found.
Unfortunately neither of the two companies interviewed had the pos-
sibility to set up the framework in their respective environments, but
company A has been consulted in the making of the test cases in order
to ensure that they mimic their environment to best effort. We are there-
fore confident that the validations in this chapter can be transferred to
real world environments. The first section will describe our test setup
that emulates an SDLC pipeline. We outline the concrete tools and their
qualifications. The following section will explain the test cases con-
structed in order to generate events from the tools chosen. The third
section describes the results generated and the evaluations whether or
not the tracelinks based on the data collected in the graph database have
been made.

4.1 Test setup

For our test setup we have chosen to include three systems; a task man-
agement system, a version control system and a build system. These
tools are core components in all SDLCs, and it is deemed very likely
that the framework’s ability to generate tracelinks can be extended to all
other tools in a given setup. This section will describe the specific tools
chosen for the setup as well as the DSL generated to parse their data.

42 Chapter 4. Framework validation

Figure 4.1: Illustration of the test setup. The black arrows illustrate the
flow of inter-tool messages. The blue arrows illustrate the framework
messages and endpoints.

Task management The tool chosen for the setup is Jira[18] from At-
lassian. It provides issue tracking and project management. One of the
main reasons for choosing this is that both interviewed companies are
either using it or have an interest in evaluating its capabilities. It has a
very simple set of artifacts from the start and can be fully customized in
terms of workflow and properties on the given artifacts.

Jira has webhooks for emitting an event whenever there is a change
in the system, be it workflow related or user management etc. We have
configured Jira to only send events concerning the tasks. An example of
one such data file is displayed in the appendix Example of tool emitted
data.

In order to pass the several hundred lines long file into our entity
structure, we have implemented a parser in our DSL:

1 parser ’JSON’
2 entity {
3 id = eval(’$.issue.id’)

4.1. Test setup 43

4 prev = array(retrievePrev(),eval(’$.issue.id’))
5 url = eval(’$.issue.self’)
6 type = eval(’$.webhookEvent’)
7 healthy=true
8 data = all
9 timestamp = new Date(eval(’$.timestamp’, ’java.lang.Long’))

10 }
11
12 def retrievePrev(){
13 String issuetrack =

eval(’$.issue.fields.comment.comments[0].body’)
14 if (issuetrack!=null)
15 return issuetrack.substring(issuetrack.lastIndexOf(’]’)-39,

issuetrack.lastIndexOf(’]’))
16 return null
17 }

Listing 4.1: DSL code for parsing Jira files

Unlike the Jenkins DSL parser described in listing 3.4 we had to make a
GPL based method in order to get the SHA-1 id from the Gitlab commit
since it was not available in a property of its own. This example illus-
trates well the benefits of having a mother GPL language to engage with
when special cases need to be coded.

Version control system (VCS) The tool chosen as VCS is Git, an open-
source distributed VCS that rapidly is becoming the defacto standard
system to use. It is used in one of the most complex and actively de-
veloped codebases in the world, the Linux kernel. We use a repository
management system on top of Git called GitLab. It is similar to e.g.
Github and gives a web based interface as well as security management.
Gitlab also has webhooks to send messages whenever a push is sent to
a given repository.

The DSL implemented for this data is a bit different than the two
others. It needs to generate multiple entity classes for one data file.
One for the overall push and one for each of the commits contained in
that push. Lines 5-13 take care of making an entity for each commit,
and lines 16-24 make the push entity, with the reference back to all the
commits.

1 parser ’JSON’
2

44 Chapter 4. Framework validation

3 list = eval ’$.commits[*].id’,’List’
4 list.eachWithIndex { val, idx ->
5 entity {
6 id = eval(’$.commits[’+idx+’].id’)
7 prev = ""
8 url = eval(’$.commits[’+idx+’].url’)
9 type = ’commit’

10 healthy=true
11 data = all
12 timestamp =

parseDate(eval(’$.commits[’+idx+’].timestamp’),
"yyyy-MM-dd’T’HH:mm:ssX")

13 }
14 }
15
16 entity {
17 id = eval(’$.before’)+eval(’$.after’)
18 prev = eval(’$.commits[*].id’,’List’)
19 url = eval(’$.repository.homepage’)
20 type = eval(’$.object_kind’)
21 healthy=true
22 data = all
23 timestamp = new Date()
24 }

Listing 4.2: DSL code for parsing Gitlab files

Build system The tool chosen as build system is Jenkins. It is the
leading open source automation server with over 100,000 installations
worldwide, and over 1000 plugins. It is used for testing, building, pack-
aging and deploying software in all kinds of languages. Both companies
are using it as well.
The DSL created for parsing Jenkins files is shown in listing 3.4. In that,
we made use of ternary operators that stem from the GPL.

This setup enables us to perform test cases in a simplified environ-
ment and evaluate the usefulness of the framework based on those cases.

4.2. Test cases 45

4.2 Test cases

In order to evaluate the framework’s ability to comply with the capabili-
ties, some test cases need to be conducted. A collection of four test cases
where constructed. They represent some common scenarios in a regular
SDLC and will serve as the basis for the evaluation of the framework.
Each test case is listed below with a description of the case as well as a
reasoning for its existence.

1: Simple Make a task, start the task, deliver some code, start a build,
close the task.
This is the simplest way to trigger all the tools involved in the setup
and also resembles the very basic setup of small simple reposito-
ries.

2: Branching Make a task, start the task, make a branch, deliver some
code, start a build, merge the branch, close the task.
This scenario covers the branch by feature/activity strategy de-
scribed in [53, 8].

3: Branch/Build/Merge/Build (BBMB) Make a task, start the task, make
a branch, deliver some code, start a build, merge the branch, start
a build, close the task.
The test case simulates a more advanced scenario where the build
servers act as the safeguard to the master branch[20]. Only if the
build succeeds, the commits from the branch are merged into mas-
ter. This strategy ensures that the master branch is releasable at all
times.

4: Build/Build Make a task, start the task, deliver some code, start a
build, start another build, close the task.
This test case is primarily made to test the Finding 3 compliance.
Here, two builds from the same repository and set of commits
need to be verified as containing the same code. The two builds
are made because of different environments in the simulation test
facilities and in the real test vehicles. To simulate that situation we
set up two Jenkins builds to run. When one has successfully run
without failure, it starts the next build.

Even though its primary reason for this test case is the ISO26262
compliance, case company A, which does not operate under these

46 Chapter 4. Framework validation

compliance rules, has similar scenarios in their pipeline e.g. when
one codebase gets compiled to several platforms.

A short video have been produced to show you how the simple test-
case is running in the test setup. The url for the video is the following:
https://www.youtube.com/watch?v=lrNjMbQXpjU

4.3 Results

We have structured this section by the findings listed in the Findings
subsection. For each finding, we will run the appropriate test cases
and display the results generated. We will also evaluate whether the
capability has been fulfilled or not. We will not produce any results
for Finding 5, as stated before. This is due to a completely different
capability of the framework that has been deemed out of scope for this
thesis. Finding 3: Case A: making compliance with ISO 26262 is a special
case as well, making it only applicable to test case 4. It has therefore
only that test case as the target.

For every test case run, the graph database will collect all the events
translated into event nodes with the data defined in our format, and
sub-nodes with all the tool specific data. To illustrate what the data look
like and the amount of nodes generated, figure 4.2 shows a scenario
where one commit is pushed to a given repository, following a Jenkins
build which has a start and stop event.

Figure 4.2: Illustration of event nodes (colored yellow), and all the tool
specific data (any other color).

The illustrations are taken from Neo4J’s cypher query browser. In future

https://www.youtube.com/watch?v=lrNjMbQXpjU

4.3. Results 47

illustrations, we are filtering all the sub-nodes to give a cleaner view of
the graph.

4.3.1 Finding 1: Ability to visualize the pipeline from a given event.

For every test case in this subsection a graphical illustration of the nodes
is being displayed. Listing 4.3 shows the query used to get this graph
illustration. It starts with one event node in the graph and retrieves
all the corresponding event nodes connected to it. Therefore, it does
not matter which one of the event nodes we retrieve as our query is
direction agnostic.

1 MATCH (n:Event)-[r:Triggered_by*]-(m:Event)
2 WHERE n.id={event id}
3 RETURN n,r,m

Listing 4.3: Cypher query for visualizing the SDLC pipeline

1: Simple gives the following result on the simple test case:

Figure 4.3: Illustration of the events collected in the "simple" test case.

In figure 4.3 we can see that all the events emitted in the test case have
been traced, and the tracelinks have been created. The graph shows two
nodes for Jenkins. This is because we put a call to our framework both

48 Chapter 4. Framework validation

the pre and post condition of the build. Likewise there are four nodes
representing Jira. They are there because there are four events happen-
ing to that artifact (issue): the creation of the issue, the phase change
from created to start working, the reference to the pushed commit and
the closing of the issue in the end.

Because all nodes have been connected correctly, we see this test case
as successfully fulfilling the capability.

2: Branching When making this test case, we start up with a mas-
ter branch. We then create another branch called development, and
push changes to that. When done, we let Jenkins take the development
branch, and build and test the code. If the tests are successful, we will
merge the commits from the development branch into the master branch
as illustrated in 4.4. In this example, only a single commit was made, but
it makes no difference since the commits all will be built and merged.

69ec834: Merge commit ’755d9a4’ into Master

755d9a4: Fixed bug from PROJ-17

63268c1: Some other change PROJ-16

Figure 4.4: Illustration of the two branches master (left) and development
(right). A change is made at development and merged back to master.

Figure 4.5: Illustration of the events collected in the "branching" test
case. (1) are Jira events, (2) are Jenkins events, and (3) and (4) are the
merge commit and commit with the actual change respectively.

4.3. Results 49

In figure 4.5 we can see that all the events emitted in the test case
have been traced and that the tracelinks have been collected. Therefore
we see this test case as successfully fulfilling the capability.

3:Branch/Build/Merge The important thing from this test case to the
one before is whether or not both builds will be traceable back to the
same commits even when they build from different branches.

Figure 4.6: Illustration of the events collected in the "BBMB" test case.
(1) are Jira events, (2) and (3) are Jenkins events, and (4) are the merge
commit and commit with the actual change respectively.

As seen on figure 4.6 both build events have made tracelinks back to
the commit. Therefore we see this test case as successfully fulfilling the
capability.

4:Build/Build Seeing how two builds in the last test case were suc-
cessfully traced, one could imagine that this test case is superfluous.
But the two builds are from the same branch of code and for that reason
interesting enough to research.

Figure 4.7 is almost identical to figure 4.6 except for the merge com-
mit made in the latter. We deem this test a success as well.

4.3.2 Finding 2: Ability to measure lead time between two events

The result here is finding out how long a given pipeline has run. By con-
tinuously querying several instances of the pipeline we are able to see if

50 Chapter 4. Framework validation

Figure 4.7: Illustration of the events collected in the "Build/build" test-
case. (1) are Jria events, (2) are Git commit and push events, and (3) and
(4) are the two Jenkins builds that refer to the same commit

there is an increase in the duration, enabling us to identify bottlenecks
etc.

1 MATCH(n:Event)-[r:Triggered_by*]-(b:Event)
2 WHERE id(n)={event id}
3 RETURN (max(b.timestamp)-n.timestamp)/1000

Listing 4.4: Cypher query for finding out the duration of a given
pipeline

The Cypher query shown in listing 4.4 takes the start node and tra-
verse from that out to every Event node in its graph. The node that has
the largest unix timestamp is then compared to the start node and the
returned result is the number of seconds between the two events. As
these results vary depending on the time it takes to perform the tests,
there is no way to reproduce the test and get the same result.

By manually examining the timestamps on the nodes in the graphs
created, the results in this test scenario have been verified. We deem this
capability successfully tested.

4.3.3 Finding 3: Case A: making compliance with ISO 26262.

The query created to test this capability is somewhat the same as the
query for Finding 1, with the exception that we are only interested in
the build events created by Jenkins:

4.3. Results 51

Test case Result
1: Simple 196 seconds
2:Branching 116 seconds
3:Branch/Build/Merge 3363 seconds
4:Build/Build 320 seconds

Table 4.1: Lead time between issue creation and the last event of the
pipeline

1 MATCH(n:Event)-[r:Triggered_by]-(b:Event)
2 WHERE n.id IN["{git SHA-1}"] and b.type STARTS WITH "Jenkins"
3 RETURN n,r,b

Listing 4.5: Cypher query for getting the builds connected to an
array of commits.

4:Build/Build The query successfully returns the four events repre-
senting the two builds made in the pipeline as seen in figure 4.8. We
therefore deem this capability successful as well.

Figure 4.8: Illustration of the events collected in the "Build/build" test
case. (1) is the Git commit, (2) and (3) are the two Jenkins builds that
refer to the same commit.

4.3.4 Finding 4: Management: Has this issue been resolved in this release?

As we do not have any artifact management software in the test setup
it is not possible to show the full set of tracelinks from issue to artifact.
But since Finding 4 is basically a specialized version of Finding 1, we

52 Chapter 4. Framework validation

treat it as fulfilled if Finding 1 is so. In order to retrieve only the set
of nodes that is needed to fulfill this capability, the query displayed in
listing 4.6 -where n is the Jira issue and b is the Jenkins build- needs to
be examined.

1 MATCH(n:Event)-[r:Triggered_by*]-(b:Event)
2 WHERE n.id IN["{Jira Issue id}"]
3 AND b.id IN ["{Jenkins build id}"]
4 RETURN n,r,b

Listing 4.6: Cypher query for checking if a given issue is covered in
a build.

4.4 Summary

In this chapter we have conducted a series of test cases to ensure that
the constructed framework had the desired capabilities. For each test
scenario the resulting graph has been shown, and for every finding a
matching cypher query has been constructed to retrieve the desired data
from the database.
The framework has during the test cases performed shown to possess
the capabilities wanted. We have shown that the framework is able to
make the tracelinks by parsing tool specific data emitted from the tools
selected for the test.

Chapter 5

Limitations

In this chapter we will touch upon some of the limitations encountered
either in the validation method or in the original thesis delimitation. The
chapter is divided into sections that each represents an identified limi-
tation. Assessments of the severity of the limitation, as well as possible
mitigations, will be discussed through each of them.

5.1 Validation

It is not possible to test every given setup and function that a normal en-
terprise will come across. In order to tell with certainty if the framework
has actually attained the desired capabilities, it needs to be deployed to
production at a company.

Because we were unable to do that, we created a test scenario with
a small sample of test cases. The small sample size of test cases rep-
resents normal operations in an SDLC and we would argue that more
advanced setups are just alternations of these 4 test cases. Furthermore,
we have collaborated with one of the companies to ensure that the tests
conducted resemble that of a real environment. But as we have not
tested the framework in production, we have not been able to tackle the
unforeseen circumstances that are always present in practice.

5.2 Performance

The solution created in this thesis is designed towards enterprises, and
it is therefore important to validate its abilitiy to function in large scale

54 Chapter 5. Limitations

projects. The tests conducted in this thesis does not account for perfor-
mance and stress testing of the framework in any way. Likewise there
has been no performance optimization of the framework. An example of
such lack is that every Cypher query takes up a session to the database,
and all queries are run in isolated transactions. Every part of the frame-
work runs single threaded.
All these examples could be changed to improve efficiency if the frame-
work hits a bottleneck.

The framework produced is seen as a prototype, a way of investi-
gating if this approach was feasable or not. When designing it we have
made sure that the technologies chosen have been industry proven.

5.3 Version control traceability

When dealing with Git as a VCS, there are some scenarios where the
traceability inside the VCS itself will be broken, making our graph bro-
ken as well.

cherry-picking When cherry-picking a commit from one branch to an-
other inside a repository, the id of that commit changes. This brakes
traceability when e.g. one bugfix is being implemented in several
branches (Current, version 1.0, version 0.9). This problem is somewhat
mitigated by mentioning the task in the commit, making the task man-
agement system aware of the commit. But for our tool, it will seem like
there are three different commits being made to solve the same bug.

rebase Likewise cherry-picking, rebasing illustrates the same problem.
If you change the path on which the commit is located in the repository,
the id changes. This has some consequences outside traceability as well,
making the authors of git come with this word of causion on using
rebase[10]:

Do not rebase commits that exist outside your repository.

In the context of the quote, "your" refers back to the users local repos-
itory, meaning that you should not rebase commits that any other user
depends on in their branch.

These examples are Git specific, but other versioning tools have sim-
ilar limitations. The limitations concerning the VCS would also be

5.4. Event and Artifact id namespace 55

present in any other traceability tool, as the limitiations are created in-
ternally in the target tool.

5.4 Event and Artifact id namespace

Every event in our traceability model needs to have an id. That id is
usually the related artifact’s id that the event then inherits. The id is
unique if the event and artifact are the same and therefore have a 1:1
relationship. An example is the Git commit, as the commit both repre-
sents the event and the artifact.
However, this is often not the case.

One event, several artifacts Some events concern several artifacts. A
Git push is an event itself and does not have a particular artifact con-
nected. Instead, the push represents a transfer of commits from one
repository to the next. In that case, we need to make up an artificial id
for the event as shown in the last entity made on listing 4.2 line 17. The
artificial id makes it hard for any other event to refer back to that event.
That is the only one of this kind discovered during the thesis writing.
In this particular case the push itself is not responsible for alternations,
giving it an informative role only.

We argue that that would be the logical case for any other event that
does not have an artifact underneath, because if an event alternates an
artifact, it will have knowledge of that particular artifact, giving it an id.

One artifact, several events A single artifact can also have several
events related to it. For example, Jenkins has a build (artifact) that starts
and stops (events). Jira has an issue (artifact) that is created and op-
tionally updated (event). As a result, there will be several events in the
graph with the same id, which can be seen in the Results section, e.g.
at illustration 4.6 in selections 1, 2 and 3. This devaluates the ability to
make tracelinks on an event level.

We solve this by making the reference from Jira (issue) towards
Gitlab (commit). In that way, it is only the specific updates to an issue
that actually reference a commit that gets the tracelink. But this is only
possible if one of the sides of the tracelink has a 1:1 relationship to its
artifact.

56 Chapter 5. Limitations

This limitation lacks a good mitigation strategy. In order to iden-
tify each event individually, we need to set some requirements on the
toolstack that cannot be honored by several of the tools investigated.
Jenkins only has an id to the build, and not to its start and stop. In
the same way, the id is unique on an issue basis in Jira. Therefore, we
cannot enforce an event level unique id schema without excluding some
tools for which reason we need to make due with the current level of
uniqueness in the data model.

The level of uniqueness is fine-grained enough for our framework to
possess the capabilities wanted, as the results shows. Therefore, we do
not deem this as a severe limitation.

5.5 Schemaless types

As stated in the Analysis we wanted to take a different approach to
traceability than found in the literature by not having a fixed set of
types, but only a single supertype with the flexibility of naming the
type what suits the company. This has been impossible to evaluate on
since we have not conducted trials of either of the approaches in real life
environments. In the test setup used in this thesis, only a fixed set of
types was used, but these can change from one setup to another, from
one toolstack to the next. When looking at the proposed schemas in
Literature review, it is clear to see that the schemas not only try to make
horizontal traceability across the toolstack but also vertical traceability
inside each tool section. Looking back at figure 2.1, the framework pro-
posed here in this thesis only covers about half of the types presented,
i.e. Tests, Implements, Refines, Documents, and maybe Realizes de-
pending on the context. That makes a comparative study up against the
schema-full and schema-less approach difficult to conduct. In defense of
our approach, one could state that we considered the approach chosen
suitable enough for the purpose specified.

5.6 Summary

In this chapter we discussed some of the limitations that we encoun-
tered either in our thesis delimitation or in the conducted framework
validation. For every limitation listed, an explanation, assessment and
optionally a mitigation strategy were presented. These limitations help

5.6. Summary 57

us in evaluating the results produced in the Framework validation chap-
ter.

Chapter 6

Future research

A thesis is a compact project only spanning 4 months from initiation
to finish, making the scope of the project focused in order to produce
results in that time frame. For that reason, a lot of things were deemed
out of scope although still important if this framework would see real
world adoptation. This chapter describes some of the activities that
could be relevant from an academic and/or professional perspective.
As in the Limitations chapter there is a section dedicated to each of
the topics. Each section explains the possible branch of research and
describes its usefulness.

6.1 Visual tool/front end

As stated in the Thesis delimitation section, having a visual front end
that has great usability and ease of use is very important in a successful
adoption of tools in any SDLC. As [44] puts it:

Tools are central enablers, like it or not.

The more available a tool is, the more it will be used. An example of
such visualization tool is figure 2 in [31] also displayed in this thesis as
figure 6.1. The figure shows a screenshot of a tool where a given de-
veloper can see the event chain from a commit throughout the pipeline.

Furthermore, a study of usability could also aid in uncovering more
use cases that the framework could be applicable in helping. In much
the same way as [46] describes production of software in research, some

60 Chapter 6. Future research

Figure 6.1: A developer-centric ”Follow Your Commit” visualization of
the Eiffel framework

things do not pop up as possibilities, problems or alternations before a
prototype of the software is used.

6.2 Log files aka expost f acto events

With enterprise companies, more often than not, the software compo-
nents developed are not newly started but have had years of develop-
ment behind them. That means that the framework constructed here
would be inserted in an already running SDLC with lots of artifacts cre-
ated.
By utilizing historical data, the framework could benefit the traceability
needs in a given SDLC from the instant it was implemented.

One way to suck up historical data is to look into the log files of the
given applications. Log files are usually line based, with poor formatting
compared to the JSON event data formats that have been worked on.
The focus of an application log is more on the system’s performance
and health than on what the users of the system are doing. A topic of
research could therefore be to analyze and make parsers that take log
files instead of event calls and make the tracelinks in the graph database.

Another way could be to make extractors from the database of each
application. This, however, requires a deep knowledge of the internal
structure of the data in the given database. Database schemas are usu-
ally also considered internal to the application, with changes occurring
without warning.

6.3. Named relations 61

6.3 Named relations

As stated in the Limitations chapter, we did not evaluate whether or not
working without a fixed set of relation types was beneficial. Right now
the type of relation that is established between two nodes in Neo4J is
hardcoded as triggered_by, as also shown in figure 3.3. This makes it
impossible to establish the relationship types illustrated in figure 2.1. In
order to make this type controlled by the user, it must be inserted into
the data format. It is a small change in the DSL engine, and the primary
reason this is not implemented is that the capabilities required from the
interviews did not require this. But in order to gain a more detailed
traceability like the ones described in [52, 51], the proposed change is
needed.

The benefit of gaining named relationship types is that more generic
queries to the database can be made.
Imagine that we want to display all builds to a given issue:

1 MATCH(n:Event)-[r:Triggered_by*]-(b:Event)
2 WHERE n.id IN["{Jira Issue id}"]
3 AND b.type STARTS WITH "Jenkins"
4 RETURN n,r,b

Listing 6.1: Cypher query for finding the builds related to a given
Jira issue

Listing 6.1 illustrates that with the current implementation, we need
to know what the type name of the given build events is. Here they start
with "Jenkins", but if the company is using Gerrit, Travis or any other
build tool, this query would not work.

1 MATCH(n:Event)-[r:Triggered_by*]-(b:Event)-[re:Build]-(e:Event)
2 WHERE n.id IN["{Jira Issue id}"]
3 RETURN n,r,b,re,e

Listing 6.2: Cypher query for finding the builds related to a given
Jira issue.

In listing 6.2 we have deleted the part of the Cypher query where
Jenkins was mentioned and instead inserted a build relation in the path
pattern. Neo4J supports multiple labels to each relation and node, al-
lowing both a general triggered_by label as well as a specific one like
build.

62 Chapter 6. Future research

6.4 Alternatives

While doing research for the thesis, we got in contact with an employee
at Ericsson who worked with traceability inside the company. Ericsson
has their own self build tracing and orchestrating system called Eiffel
[11, 31], also mentioned in the Literature review section. Their sys-
tem combines the traceability features researched in this thesis together
with an orchestration mechanism that Finding 5 is requesting. It uses
a fixed set of messaging formats passed through a central message bro-
ker and stored in a NoSQL document database. The protocol on which
their framework relies is being open sourced and further developed on
Github[11]. The underlying architecture remains at this time propri-
etary and there are no known publicly available implementations of the
protocol yet. [31] displays good results in the usage of the framework
internally.

Continuous delivery orchestration. If Finding 5 was to be pursued,
it could be beneficial to incorporate the Eiffel protocol as it has been
tried and tested in a production environment at a large enterprise. As
the implementation around the protocol is not open sourced, one needs
to implement the architecture. The framework presented in this thesis
could serve as a foundation for the new architecture, taking advantage
of the DSL language and graph database while extending the clients to
also be consumers and therefore triggering mechanisms. This would
remove the flexible type system as the protocol has a fixed set of types
associated with it, but the framework would gain time-proven efficiency
from using a protocol that has been in production for a long time.

Chapter 7

Conclusion

The goal of this thesis project was to tackle the horizontal traceabil-
ity problem that enterprise companies have while they are developing
software at scale. Large software vendors are claiming that they achieve
both vertical and horizontal traceability as long as you use their software
everywhere in the tool stack. This makes the selection of best-of-breed
tools impossible and enforces vendor lock-in.

When having a heterogeneous software tool stack, integration rarely
happens to more than the neighboring tools in the pipeline. With inte-
gration restricted to the neighboring tools only, horizontal traceability is
not present.

This thesis tries to tackle the problem of horizontal traceability in a
heterogeneous tool stack. In contrast to most efforts and literature pub-
lished, this thesis tried another approach where the subject for traceabil-
ity is the events, not the artifacts themselves. By combining this event
based approach to traceability, defining a DSL for parsing data from
any possible tool, and leveraging the strengths of a graph database into
a prototype framework, we have shown that this approach is capable of
making the horizontal trace lines that the industry wants. The frame-
work leverages the fact that when a tool is activated in the pipeline,
it knows who the activating "parent" is and is thus able to make the
wanted horizontal traceability.

Through case company interviews we defined capabilities that the
framework must possess. One of the capabilities found in the interviews
were excluded because of the large implication to the framework. If this
capability of a pipeline triggering mechanism was to be implemented,

64 Chapter 7. Conclusion

a recommendation to include the protocol open sourced from Ericsson
has been given.

The framework has been tested whether it fulfills the remaining ca-
pabilities through several test cases. The framework passed all test cases
constructed, and validated all the capabilities chosen. The artificial test
scenarios were, albeit validated by one of the case companies, a limita-
tion to the study. In order to gain more confidence in the framework
constructed, its performance and ability to function in real-world sce-
narios, industry tests need to be made as well. In order to get the best
evaluations and secure a high level of adoption of the framework in a
real world scenario, a visual front end that is easy to use must be made.

There is a strong need for efficient traceability in the software devel-
opment industry. This thesis presents a prototype of a generic frame-
work. It is capable of integrating into any heterogeneous tool stack the
company has in their SDLC, giving much wanted horizontal traceability.

7.1 Acknowledgement

A lot of people helped during the process of working with this thesis.
They have made small and large contributions from technical discus-
sions, proofreading, opening doors to contacts in the case companies
etc.
I want to thank the following people:
My supervisor Thomas Hildebrandt.
My friends Laura Hauch and Jens Egholm.
All the people at Praqma, especially Lars Kruse, Andrey Devyatkin and
Thierry Lacour.
The JOSRA group.
Employees at the two case companies.
Daniel Ståhl from Ericsson.
Without these people, the thesis would not have been.

Appendix A

Mail correspondance

Figure A.1: Case A: Response

66 Appendix A. Mail correspondance

Figure A.2: Case A: Reply

Figure A.3: Case B: Response

Figure A.4: Case B: Reply

Appendix B

Example of tool emitted data

You can find many more examples of both tool emitted data, and their
corresponding Entity formats in the Tracy code project under src/-
main/resources.

B.1 Jira data

1 {
2 "timestamp": 1460367244452,
3 "webhookEvent": "jira:issue_updated",
4 "user": {
5 "self":

"http://172.17.0.1:8040/rest/api/2/user?username=gitlab",
6 "name": "gitlab",
7 "key": "gitlab",
8 "emailAddress": "gitlab@noname.com",
9 "avatarUrls": {

10 "48x48":
"http://www.gravatar.com/avatar/7f9d20a30446ae4e1d1148ec3d652ad4?d=mm&s=48",

11 "24x24":
"http://www.gravatar.com/avatar/7f9d20a30446ae4e1d1148ec3d652ad4?d=mm&s=24",

12 "16x16":
"http://www.gravatar.com/avatar/7f9d20a30446ae4e1d1148ec3d652ad4?d=mm&s=16",

13 "32x32":
"http://www.gravatar.com/avatar/7f9d20a30446ae4e1d1148ec3d652ad4?d=mm&s=32"

14 },
15 "displayName": "gitlab",

68 Appendix B. Example of tool emitted data

16 "active": true,
17 "timeZone": "Etc/UTC"
18 },
19 "issue": {
20 "id": "10006",
21 "self": "http://172.17.0.1:8040/rest/api/2/issue/10006",
22 "key": "PROJ-7",
23 "fields": {
24 "issuetype": {
25 "self":

"http://172.17.0.1:8040/rest/api/2/issuetype/10001",
26 "id": "10001",
27 "description": "A task that needs to be done.",
28 "iconUrl":

"http://172.17.0.1:8040/secure/viewavatar?size=xsmall&avatarId=10318&avatarType=issuetype",
29 "name": "Task",
30 "subtask": false,
31 "avatarId": 10318
32 },
33 "components": [],
34 "timespent": null,
35 "timeoriginalestimate": null,
36 "description": null,
37 "project": {
38 "self":

"http://172.17.0.1:8040/rest/api/2/project/10000",
39 "id": "10000",
40 "key": "PROJ",
41 "name": "ProjectName",
42 "avatarUrls": {
43 "48x48":

"http://172.17.0.1:8040/secure/projectavatar?avatarId=10011",
44 "24x24":

"http://172.17.0.1:8040/secure/projectavatar?size=small&avatarId=10011",
45 "16x16":

"http://172.17.0.1:8040/secure/projectavatar?size=xsmall&avatarId=10011",
46 "32x32":

"http://172.17.0.1:8040/secure/projectavatar?size=medium&avatarId=10011"
47 }
48 },
49 "fixVersions": [],
50 "aggregatetimespent": null,

B.1. Jira data 69

51 "resolution": null,
52 "timetracking": {},
53 "attachment": [],
54 "aggregatetimeestimate": null,
55 "resolutiondate": null,
56 "workratio": -1,
57 "summary": "Task to be done",
58 "lastViewed": null,
59 "watches": {
60 "self":

"http://172.17.0.1:8040/rest/api/2/issue/PROJ-7/watchers",
61 "watchCount": 2,
62 "isWatching": true
63 },
64 "creator": {
65 "self":

"http://172.17.0.1:8040/rest/api/2/user?username=sofusalbertsen",
66 "name": "sofusalbertsen",
67 "key": "sofusalbertsen",
68 "emailAddress": "sofusalbertsen@gmail.com",
69 "avatarUrls": {
70 "48x48":

"http://www.gravatar.com/avatar/98e92798e4582a868b00a48857856a67?d=mm&s=48",
71 "24x24":

"http://www.gravatar.com/avatar/98e92798e4582a868b00a48857856a67?d=mm&s=24",
72 "16x16":

"http://www.gravatar.com/avatar/98e92798e4582a868b00a48857856a67?d=mm&s=16",
73 "32x32":

"http://www.gravatar.com/avatar/98e92798e4582a868b00a48857856a67?d=mm&s=32"
74 },
75 "displayName": "sofusalbertsen@gmail.com",
76 "active": true,
77 "timeZone": "Europe/Copenhagen"
78 },
79 "subtasks": [],
80 "created": "2016-04-11T09:28:08.864+0000",
81 "reporter": {
82 "self":

"http://172.17.0.1:8040/rest/api/2/user?username=sofusalbertsen",
83 "name": "sofusalbertsen",
84 "key": "sofusalbertsen",
85 "emailAddress": "sofusalbertsen@gmail.com",

70 Appendix B. Example of tool emitted data

86 "avatarUrls": {
87 "48x48":

"http://www.gravatar.com/avatar/98e92798e4582a868b00a48857856a67?d=mm&s=48",
88 "24x24":

"http://www.gravatar.com/avatar/98e92798e4582a868b00a48857856a67?d=mm&s=24",
89 "16x16":

"http://www.gravatar.com/avatar/98e92798e4582a868b00a48857856a67?d=mm&s=16",
90 "32x32":

"http://www.gravatar.com/avatar/98e92798e4582a868b00a48857856a67?d=mm&s=32"
91 },
92 "displayName": "sofusalbertsen@gmail.com",
93 "active": true,
94 "timeZone": "Europe/Copenhagen"
95 },
96 "aggregateprogress": {
97 "progress": 0,
98 "total": 0
99 },

100 "priority": {
101 "self": "http://172.17.0.1:8040/rest/api/2/priority/3",
102 "iconUrl":

"http://172.17.0.1:8040/images/icons/priorities/medium.svg",
103 "name": "Medium",
104 "id": "3"
105 },
106 "labels": [],
107 "environment": null,
108 "timeestimate": null,
109 "aggregatetimeoriginalestimate": null,
110 "versions": [],
111 "duedate": null,
112 "progress": {
113 "progress": 0,
114 "total": 0
115 },
116 "comment": {
117 "startAt": 0,
118 "maxResults": 1,
119 "total": 1,
120 "comments": [
121 {

B.1. Jira data 71

122 "self":
"http://172.17.0.1:8040/rest/api/2/issue/10006/comment/10020",

123 "id": "10020",
124 "author": {
125 "self":

"http://172.17.0.1:8040/rest/api/2/user?username=gitlab",
126 "name": "gitlab",
127 "key": "gitlab",
128 "emailAddress": "gitlab@noname.com",
129 "avatarUrls": {
130 "48x48":

"http://www.gravatar.com/avatar/7f9d20a30446ae4e1d1148ec3d652ad4?d=mm&s=48",
131 "24x24":

"http://www.gravatar.com/avatar/7f9d20a30446ae4e1d1148ec3d652ad4?d=mm&s=24",
132 "16x16":

"http://www.gravatar.com/avatar/7f9d20a30446ae4e1d1148ec3d652ad4?d=mm&s=16",
133 "32x32":

"http://www.gravatar.com/avatar/7f9d20a30446ae4e1d1148ec3d652ad4?d=mm&s=32"
134 },
135 "displayName": "gitlab",
136 "active": true,
137 "timeZone": "Etc/UTC"
138 },
139 "body": "Issue solved with

[a95a9f2e88a0d421a5635e6f3bdcaf50fa80fb10|http://gitlab.example.com/root/john/commit/a95a9f2e88a0d421a5635e6f3bdcaf50fa80fb10].",
140 "updateAuthor": {
141 "self":

"http://172.17.0.1:8040/rest/api/2/user?username=gitlab",
142 "name": "gitlab",
143 "key": "gitlab",
144 "emailAddress": "gitlab@noname.com",
145 "avatarUrls": {
146 "48x48":

"http://www.gravatar.com/avatar/7f9d20a30446ae4e1d1148ec3d652ad4?d=mm&s=48",
147 "24x24":

"http://www.gravatar.com/avatar/7f9d20a30446ae4e1d1148ec3d652ad4?d=mm&s=24",
148 "16x16":

"http://www.gravatar.com/avatar/7f9d20a30446ae4e1d1148ec3d652ad4?d=mm&s=16",
149 "32x32":

"http://www.gravatar.com/avatar/7f9d20a30446ae4e1d1148ec3d652ad4?d=mm&s=32"
150 },
151 "displayName": "gitlab",

72 Appendix B. Example of tool emitted data

152 "active": true,
153 "timeZone": "Etc/UTC"
154 },
155 "created": "2016-04-11T09:29:19.496+0000",
156 "updated": "2016-04-11T09:29:19.496+0000"
157 }
158]
159 },
160 "issuelinks": [],
161 "votes": {
162 "self":

"http://172.17.0.1:8040/rest/api/2/issue/PROJ-7/votes",
163 "votes": 0,
164 "hasVoted": false
165 },
166 "worklog": {
167 "startAt": 0,
168 "maxResults": 20,
169 "total": 0,
170 "worklogs": []
171 },
172 "assignee": {
173 "self":

"http://172.17.0.1:8040/rest/api/2/user?username=sofusalbertsen",
174 "name": "sofusalbertsen",
175 "key": "sofusalbertsen",
176 "emailAddress": "sofusalbertsen@gmail.com",
177 "avatarUrls": {
178 "48x48":

"http://www.gravatar.com/avatar/98e92798e4582a868b00a48857856a67?d=mm&s=48",
179 "24x24":

"http://www.gravatar.com/avatar/98e92798e4582a868b00a48857856a67?d=mm&s=24",
180 "16x16":

"http://www.gravatar.com/avatar/98e92798e4582a868b00a48857856a67?d=mm&s=16",
181 "32x32":

"http://www.gravatar.com/avatar/98e92798e4582a868b00a48857856a67?d=mm&s=32"
182 },
183 "displayName": "sofusalbertsen@gmail.com",
184 "active": true,
185 "timeZone": "Europe/Copenhagen"
186 },
187 "updated": "2016-04-11T09:34:04.450+0000",

B.2. Gitlab data 73

188 "status": {
189 "self":

"http://172.17.0.1:8040/rest/api/2/status/10001",
190 "description": "",
191 "iconUrl":

"http://172.17.0.1:8040/images/icons/status_generic.gif",
192 "name": "Done",
193 "id": "10001",
194 "statusCategory": {
195 "self":

"http://172.17.0.1:8040/rest/api/2/statuscategory/3",
196 "id": 3,
197 "key": "done",
198 "colorName": "green",
199 "name": "Done"
200 }
201 }
202 }
203 },
204 "changelog": {
205 "id": "10006",
206 "items": [
207 {
208 "field": "status",
209 "fieldtype": "jira",
210 "from": "3",
211 "fromString": "In Progress",
212 "to": "10001",
213 "toString": "Done"
214 }
215]
216 }
217 }

Listing B.1: Jira data file

B.2 Gitlab data

1 {
2 "object_kind": "push",
3 "before": "a95a9f2e88a0d421a5635e6f3bdcaf50fa80fb10",
4 "after": "590670a5ede2aef3569d84df5f53f41bbb5e441b",

74 Appendix B. Example of tool emitted data

5 "ref": "refs/heads/master",
6 "checkout_sha": "590670a5ede2aef3569d84df5f53f41bbb5e441b",
7 "message": null,
8 "user_id": 2,
9 "user_name": "Jenkins",

10 "user_email": "jenkins@jenkins.com",
11 "project_id": 1,
12 "repository": {
13 "name": "TracyRepo",
14 "url": "git@gitlab.example.com:root/john.git",
15 "description": "",
16 "homepage": "http://gitlab.example.com/root/john",
17 "git_http_url": "http://gitlab.example.com/root/john.git",
18 "git_ssh_url": "git@gitlab.example.com:root/john.git",
19 "visibility_level": 20
20 },
21 "commits": [
22 {
23 "id": "590670a5ede2aef3569d84df5f53f41bbb5e441b",
24 "message": "Fixes PROJ-7",
25 "timestamp": "2016-04-11T09:34:02+00:00",
26 "url":

"http://gitlab.example.com/root/john/commit/590670a5ede2aef3569d84df5f53f41bbb5e441b",
27 "author": {
28 "name": "Jenkins",
29 "email": "jenkins@jenkins.com"
30 },
31 "added": [],
32 "modified": [
33 "README.md"
34],
35 "removed": []
36 }
37],
38 "total_commits_count": 1
39 }

Listing B.2: Gitlab data file

B.3 Jenkins data

1 {

B.3. Jenkins data 75

2 "actions": [
3 {
4 "causes": [
5 {
6 "shortDescription": "Started by user anonymous",
7 "userId": null,
8 "userName": "anonymous"
9 }

10]
11 },
12 {
13 "buildsByBranchName": {
14 "refs/remotes/origin/master": {
15 "buildNumber": 201,
16 "buildResult": null,
17 "marked": {
18 "SHA1": "fc81df1fe70f7a3272008278d02cfa8aa4e95b90",
19 "branch": [
20 {
21 "SHA1":

"fc81df1fe70f7a3272008278d02cfa8aa4e95b90",
22 "name": "refs/remotes/origin/master"
23 }
24]
25 },
26 "revision": {
27 "SHA1": "fc81df1fe70f7a3272008278d02cfa8aa4e95b90",
28 "branch": [
29 {
30 "SHA1":

"fc81df1fe70f7a3272008278d02cfa8aa4e95b90",
31 "name": "refs/remotes/origin/master"
32 }
33]
34 }
35 }
36 },
37 "lastBuiltRevision": {
38 "SHA1": "fc81df1fe70f7a3272008278d02cfa8aa4e95b90",
39 "branch": [
40 {
41 "SHA1": "fc81df1fe70f7a3272008278d02cfa8aa4e95b90",

76 Appendix B. Example of tool emitted data

42 "name": "refs/remotes/origin/master"
43 }
44]
45 },
46 "remoteUrls": [
47 "http://172.17.0.1/root/john.git"
48],
49 "scmName": ""
50 },
51 {},
52 {}
53],
54 "artifacts": [],
55 "building": true,
56 "description": null,
57 "displayName": "#201",
58 "duration": 0,
59 "estimatedDuration": 7956,
60 "executor": {},
61 "fullDisplayName": "Test-job #201",
62 "id": "201",
63 "keepLog": false,
64 "number": 201,
65 "queueId": 120,
66 "result": null,
67 "timestamp": 1458479882954,
68 "url": "http://172.17.0.1:8080/job/Test-job/201/",
69 "builtOn": "",
70 "changeSet": {
71 "items": [
72 {
73 "affectedPaths": [
74 "README.md"
75],
76 "commitId": "fc81df1fe70f7a3272008278d02cfa8aa4e95b90",
77 "timestamp": 1458479857000,
78 "author": {
79 "absoluteUrl":

"http://172.17.0.1:8080/user/sofusalbertsen",
80 "fullName": "sofusalbertsen"
81 },
82 "comment": "test",

B.3. Jenkins data 77

83 "date": "2016-03-20 14:17:37 +0100",
84 "id": "fc81df1fe70f7a3272008278d02cfa8aa4e95b90",
85 "msg": "test",
86 "paths": [
87 {
88 "editType": "edit",
89 "file": "README.md"
90 }
91]
92 }
93],
94 "kind": "git"
95 },
96 "culprits": [
97 {
98 "absoluteUrl":

"http://172.17.0.1:8080/user/sofusalbertsen",
99 "fullName": "sofusalbertsen"

100 }
101],
102 "mavenArtifacts": null,
103 "mavenVersionUsed": "3.3.9"
104 }

Listing B.3: Jenkins data file

Appendix C

Code

All the code produced for this thesis is handed in in the seperate zip
package on LearnIt, as it is impossible to read code in pdf. If the code
for some reason is not avaliable or you are not supervisor or censor, then
look at the following three sites: It is divided into three Eclipse projects
using Maven:

Tracy Framework This is the lib that is comprised in the REST imple-
mentation and in the AMQP2NEO converter. Has a Command
line interface built in.

AMQP2NEO converter to get the Json from AMQP into Neo4J.

REST2AMQP Endpoint for REST-services like Gitlab and Jira

https://bitbucket.org/sofus/tracy
https://bitbucket.org/sofus/amqp2neo
https://bitbucket.org/sofus/rest2amqp

Bibliography

[1] Application lifecycle management - wikipedia, the free encyclope-
dia. https://en.wikipedia.org/wiki/Application_lifecycle_
management. (Accessed on 26-02-2016).

[2] Aws simple icons. https://aws.amazon.com/architecture/
icons/. (Accessed on 28-04-2016).

[3] Comparison of version control software - wikipedia, the free
encyclopedia. https://en.wikipedia.org/wiki/Comparison_of_
version_control_software#General_information. (Accessed on
03-04-2016).

[4] Continuous delivery. http://www.martinfowler.com/bliki/
ContinuousDelivery.html. (Accessed on 20-04-2016).

[5] Continuous integration. http://www.martinfowler.com/
articles/continuousIntegration.html. (Accessed on 19-04-
2016).

[6] Db-engines ranking - popularity ranking of graph dbms. http:
//db-engines.com/en/ranking/graph+dbms. (Accessed on 25-04-
2016).

[7] Extreme programming rules. http://www.extremeprogramming.
org/rules.html. (Accessed on 20-04-2016).

[8] Feature branching your way to greatness | the agile coach.
https://www.atlassian.com/agile/branching. (Accessed on 11-
05-2016).

[9] For relational database developers: A sql to cypher guide. http://
neo4j.com/developer/guide-sql-to-cypher/. (Accessed on 17-
05-2016).

https://en.wikipedia.org/wiki/Application_lifecycle_management
https://en.wikipedia.org/wiki/Application_lifecycle_management
https://aws.amazon.com/architecture/icons/
https://aws.amazon.com/architecture/icons/
https://en.wikipedia.org/wiki/Comparison_of_version_control_software#General_information
https://en.wikipedia.org/wiki/Comparison_of_version_control_software#General_information
http://www.martinfowler.com/bliki/ContinuousDelivery.html
http://www.martinfowler.com/bliki/ContinuousDelivery.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://db-engines.com/en/ranking/graph+dbms
http://db-engines.com/en/ranking/graph+dbms
http://www.extremeprogramming.org/rules.html
http://www.extremeprogramming.org/rules.html
https://www.atlassian.com/agile/branching
http://neo4j.com/developer/guide-sql-to-cypher/
http://neo4j.com/developer/guide-sql-to-cypher/

82 Bibliography

[10] Git - rebasing. https://git-scm.com/book/en/v2/
Git-Branching-Rebasing. (Accessed on 05/26/2016).

[11] Github - ericsson/eiffel: The eiffel framework vocabulary, descrip-
tions, guides and schemas along with links to relevant implemen-
tation repositories. https://github.com/Ericsson/eiffel. (Ac-
cessed on 20-05-2016).

[12] Github - jayway/jsonpath: Java jsonpath implementation. https:
//github.com/jayway/JsonPath. (Accessed on 04-04-2016).

[13] The gnu general public license v3.0 - gnu project - free soft-
ware foundation. http://www.gnu.org/licenses/gpl-3.0.en.
html. (Accessed on 25-04-2016).

[14] The groovy programming language. http://www.groovy-lang.
org/. (Accessed on 25-04-2016).

[15] Iso 26262-1:2011(en), road vehicles - functional safety - part 1:
Vocabulary. https://www.iso.org/obp/ui/#iso:std:iso:26262:
-1:ed-1:v1:en.

[16] Iso 8601:2004 - data elements and interchange formats – informa-
tion interchange – representation of dates and times. http://www.
iso.org/iso/catalogue_detail?csnumber=40874. (Accessed on
26-04-2016).

[17] javax.xml.xpath (java platform se 7). https://docs.oracle.com/
javase/7/docs/api/javax/xml/xpath/package-summary.html.
(Accessed on 04-04-2016).

[18] Jira software - issue & project tracking for software teams | atlas-
sian. https://www.atlassian.com/software/jira. (Accessed on
28-04-2016).

[19] Josra. http://www.josra.org/gatherings/4th-gathering.html.
(Accessed on 02-05-2016).

[20] Josra. http://www.josra.org/blog/
An-automated-git-branching-strategy.html. (Accessed on
12-05-2016).

[21] Rabbitmq - messaging that just works. https://www.rabbitmq.
com/. (Accessed on 21-04-2016).

https://git-scm.com/book/en/v2/Git-Branching-Rebasing
https://git-scm.com/book/en/v2/Git-Branching-Rebasing
https://github.com/Ericsson/eiffel
https://github.com/jayway/JsonPath
https://github.com/jayway/JsonPath
http://www.gnu.org/licenses/gpl-3.0.en.html
http://www.gnu.org/licenses/gpl-3.0.en.html
http://www.groovy-lang.org/
http://www.groovy-lang.org/
https://www.iso.org/obp/ui/#iso:std:iso:26262:-1:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:26262:-1:ed-1:v1:en
http://www.iso.org/iso/catalogue_detail?csnumber=40874
http://www.iso.org/iso/catalogue_detail?csnumber=40874
https://docs.oracle.com/javase/7/docs/api/javax/xml/xpath/package-summary.html
https://docs.oracle.com/javase/7/docs/api/javax/xml/xpath/package-summary.html
https://www.atlassian.com/software/jira
http://www.josra.org/gatherings/4th-gathering.html
http://www.josra.org/blog/An-automated-git-branching-strategy.html
http://www.josra.org/blog/An-automated-git-branching-strategy.html
https://www.rabbitmq.com/
https://www.rabbitmq.com/

Bibliography 83

[22] Solvency ii (including "omnibus ii") - european commission.
http://ec.europa.eu/finance/insurance/solvency/solvency2/
index_en.htm. (Accessed on 25-02-2016).

[23] Ieee standard glossary of software engineering terminology. IEEE
Std 610.12-1990, pages 1–84, Dec 1990.

[24] Giuliano Antoniol, Gerardo Canfora, Gerardo Casazza, Andrea
De Lucia, and Ettore Merlo. Recovering traceability links between
code and documentation. Software Engineering, IEEE Transactions on,
28(10):970–983, 2002.

[25] Hazeline U Asuncion, Arthur U Asuncion, and Richard N Taylor.
Software traceability with topic modeling. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering-Volume 1,
pages 95–104. ACM, 2010.

[26] Hazeline U Asuncion, Frédéric François, and Richard N Taylor. An
end-to-end industrial software traceability tool. In Proceedings of the
the 6th joint meeting of the European software engineering conference and
the ACM SIGSOFT symposium on The foundations of software engineer-
ing, pages 115–124. ACM, 2007.

[27] Kent Beck. Test-driven development: by example. Addison-Wesley
Professional, 2003.

[28] Andrzej Wasowski. Thorsten Berger. Introduction to model-driven
software engineering with domain-specific languages. Unpub-
lished manuscript., 2016.

[29] Jane Cleland-Huang, Brian Berenbach, Stephen Clark, Raffaella Set-
timi, and Eli Romanova. Best practices for automated traceability.
Computer, (6):27–35, 2007.

[30] Jane Cleland-Huang, Carl K Chang, and Mark Christensen. Event-
based traceability for managing evolutionary change. Software En-
gineering, IEEE Transactions on, 29(9):796–810, 2003.

[31] Jan Bosch Daniel Ståhl, Kristofer Hallén. Continuous integration
and delivery traceability in industry: Needs and practices. Unpub-
lished paper, accepted to SEAA 16., 2016.

http://ec.europa.eu/finance/insurance/solvency/solvency2/index_en.htm
http://ec.europa.eu/finance/insurance/solvency/solvency2/index_en.htm

84 Bibliography

[32] David Dominguez-Sal, P Urbón-Bayes, Aleix Giménez-Vanó, Sergio
Gómez-Villamor, Norbert Martínez-Bazan, and Josep-Lluis Larriba-
Pey. Survey of graph database performance on the hpc scalable
graph analysis benchmark. In Web-Age Information Management,
pages 37–48. Springer, 2010.

[33] U.S. Food and Drug Administration. General principles of soft-
ware validation; final guidance for industry and fda staff. http:
//www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/
GuidanceDocuments/ucm085281.htm, 1 2012. (Accessed on 25-02-
2016).

[34] Martin Fowler. Domain-specific languages. Pearson Education, 2010.

[35] Debasish Ghosh. DSLs in Action. Manning Publications, 1 edition,
12 2010.

[36] Orlena Gotel and Anthony Finkelstein. Contribution structures (re-
quirements artifacts). In Second IEEE International Symposium on
Requirements Engineering, March 27 - 29, 1995, York, England, pages
100–107, 1995.

[37] Orlena CZ Gotel and Anthony CW Finkelstein. An analysis of
the requirements traceability problem. In Requirements Engineer-
ing, 1994., Proceedings of the First International Conference on, pages
94–101. IEEE, 1994.

[38] Jane Huffman Hayes and Alex Dekhtyar. Humans in the traceabil-
ity loop: can’t live with’em, can’t live without’em. In Proceedings
of the 3rd international workshop on Traceability in emerging forms of
software engineering, pages 20–23. ACM, 2005.

[39] James D Herbsleb and Audris Mockus. An empirical study of speed
and communication in globally distributed software development.
Software Engineering, IEEE Transactions on, 29(6):481–494, 2003.

[40] Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns:
Designing, Building, and Deploying Messaging Solutions. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[41] Lars Klimpke and Tobias Hildenbrand. Towards end-to-end trace-
ability: Insights and implications from five case studies. Software
Engineering Advances, International Conference on, 0:465–470, 2009.

http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm085281.htm
http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm085281.htm
http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm085281.htm

Bibliography 85

[42] Steinar Kvale and Svend Brinkmann. Interview–introduktion til et
håndværk, 2. Hans Reitzler Forlag: København, 2009.

[43] Mikael Lindvall and Kristian Sandahl. Practical implications of
traceability. Softw. Pract. Exper., 26(10):1161–1180, October 1996.

[44] Patrick Mäder, Orlena Gotel, and Ilka Philippow. Motivation mat-
ters in the traceability trenches. In Requirements Engineering Con-
ference, 2009. RE’09. 17th IEEE International, pages 143–148. IEEE,
2009.

[45] ABM Moniruzzaman and Syed Akhter Hossain. Nosql database:
New era of databases for big data analytics-classification, charac-
teristics and comparison. arXiv preprint arXiv:1307.0191, 2013.

[46] Jay F Nunamaker Jr, Minder Chen, and Titus DM Purdin. Systems
development in information systems research. Journal of manage-
ment information systems, 7(3):89–106, 1990.

[47] Richard F. Paige, Jonathan S. Ostroff, and Phillip J Brooke. Princi-
ples for modeling language design. Information and Software Tech-
nology, 42(10):665–675, 2000.

[48] B. Ramesh and M. Jarke. Toward reference models for requirements
traceability. IEEE Transactions on Software Engineering, 27(1):58–93,
Jan 2001.

[49] Balasubramaniam Ramesh and Matthias Jarke. Toward reference
models for requirements traceability. Software Engineering, IEEE
Transactions on, 27(1):58–93, 2001.

[50] Patrick Rempel, Patrick Mader, and Tobias Kuschke. An empiri-
cal study on project-specific traceability strategies. In Requirements
Engineering Conference (RE), 2013 21st IEEE International, pages 195–
204. IEEE, 2013.

[51] Hannes Schwarz, Jürgen Ebert, and Andreas Winter. Graph-based
traceability: a comprehensive approach. Software and System Model-
ing, 9(4):473–492, 2010.

[52] George Spanoudakis and Andrea Zisman. Software traceability: a
roadmap. Handbook of Software Engineering and Knowledge Engineer-
ing, 3:395–428, 2005.

86 Bibliography

[53] Brian A White. Software configuration management strategies and Ra-
tional ClearCase: a practical introduction. Addison-Wesley Longman
Publishing Co., Inc., 2000.

[54] Stefan Winkler and Jens Pilgrim. A survey of traceability in require-
ments engineering and model-driven development. Softw. Syst.
Model., 9(4):529–565, September 2010.

	Contents
	List of Figures
	Introduction
	Problem description
	Abbreviations
	Organization of this thesis
	Terminology definitions
	Software development life cycle
	Traceability
	Trace links
	Artifacts and events
	Continuous integration
	Continuous delivery

	Research methodology

	Analysis
	Literature review
	Thesis delimitation
	Industry interviews
	Interview setup
	Case companies
	Findings

	Summary

	Framework design
	Overall architecture
	Event-driven traceability
	Domain requirements
	Scalability
	Geographical distribution
	Namespace
	Timing

	Database model
	Cypher query language

	Data format requirements
	Message format

	Data parsing
	Framework plugins with GPL
	DSL

	DSL
	Overall framework design

	Framework validation
	Test setup
	Test cases
	Results
	Finding 1: Ability to visualize the pipeline from a given event.
	Finding 2: Ability to measure lead time between two events
	Finding 3: Case A: making compliance with ISO 26262.
	Finding 4: Management: Has this issue been resolved in this release?

	Summary

	Limitations
	Validation
	Performance
	Version control traceability
	Event and Artifact id namespace
	Schemaless types
	Summary

	Future research
	Visual tool/front end
	Log files aka ex post facto events
	Named relations
	Alternatives

	Conclusion
	Acknowledgement

	Mail correspondance
	Example of tool emitted data
	Jira data
	Gitlab data
	Jenkins data

	Code
	Bibliography

